Stochastic Models of Viral Adsorption, Fusion and Replication
病毒吸附、融合和复制的随机模型
基本信息
- 批准号:0719462
- 负责人:
- 金额:$ 11.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Viruses infect and parasitize almost all living organisms. Their remarkable proclivity for transmission, their ability to adapt to different host species and to cross-complement amongst themselves has lead to a wide variety of physical and behavioral features. Because of the tremendous effects of virus related diseases, as in the case of HIV or of the flu virus, it is extremely desirable to have a clear picture of the avenues along which viral infections proceed and thrive, so that novel therapies can be devised. The goal of this project is to develop mathematical models to understand some of the cardinal steps of viral infection, in synergy with experimentally known facts or unresolved issues. By using both numerical and analytical tools, this research aims to: (a) Study viral adsorption into healthy cells by considering reaction diffusion equations to describe binding of the virus to diffusing receptors and coreceptors at the cell surface. These models will allow the investigator to probe the effects of different receptor-coreceptor combinations, which is experimentally unresolved and which will be a useful tool for bench experimentalists and the advancement of fusion inhibitor drugs. (b) Formulate stochastic models to study the unknown mechanisms of viral uncoating and by considering several hypothetical pathways. A comparison between the results obtained and existing data will help determine the most viable disassembly mechanism. (c) Model the emergence of resistant viral strains by means of a hybrid stochastic-deterministic model where the abundant species are treated as deterministic variables and the mutant strains as stochastic ones. The conditions under which a large drug resistant population is favored will be determined. Mathematical modeling has often lead to significant progress in developing new paradigms and testing new hypothesis. In this research project, new models aimed at understanding viral dynamics will be formulated. These models will be biophysically based and developed in close collaboration with bench experimentalists to fully utilize recent advances at the nanoscale level and also to offer suggestions and non-expensive testing for working hypothesis. Several numerical and analytical subprojects will be shaped to strongly encourage the participation, education, and training of graduate and undergraduate students at different levels of their careers.
病毒感染并寄生在几乎所有的生物体内。它们显著的传播倾向、适应不同寄主物种的能力以及它们之间的交叉互补导致了各种各样的物理和行为特征。由于病毒相关疾病的巨大影响,就像艾滋病毒或流感病毒的情况一样,非常希望清楚地了解病毒感染是如何发展和蓬勃发展的,以便能够设计出新的治疗方法。该项目的目标是开发数学模型,结合实验已知的事实或未解决的问题,了解病毒感染的一些基本步骤。通过使用数值和分析工具,本研究的目的是:(A)通过考虑反应扩散方程来描述病毒与细胞表面扩散受体和辅助受体的结合,研究病毒在健康细胞中的吸附。这些模型将允许研究人员探索不同受体-辅受体组合的影响,这在实验上尚未解决,这将是实验者和融合抑制药物进展的有用工具。(B)建立随机模型,研究病毒脱壳的未知机制,并考虑几种假设途径。将获得的结果与现有数据进行比较,将有助于确定最可行的拆卸机制。(C)利用随机-确定性混合模型对耐药病毒株的出现进行建模,其中丰富的物种被视为确定性变量,突变株被视为随机变量。将确定有利于大量抗药性人口的条件。数学建模通常在开发新范式和检验新假设方面取得重大进展。在这项研究项目中,将制定旨在了解病毒动力学的新模型。这些模型将以生物物理学为基础,并与实验室实验员密切合作开发,以充分利用纳米级的最新进展,并为工作假说提供建议和廉价的测试。将形成几个数值和分析子项目,以大力鼓励不同职业水平的研究生和本科生的参与、教育和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria-Rita D'Orsogna其他文献
Maria-Rita D'Orsogna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria-Rita D'Orsogna', 18)}}的其他基金
Collaborative Research: Understanding Generation, Maintenance, and Dynamics of Immune Diversity via Clone-Count Models
合作研究:通过克隆计数模型了解免疫多样性的产生、维持和动态
- 批准号:
1814090 - 财政年份:2018
- 资助金额:
$ 11.87万 - 项目类别:
Continuing Grant
Collaborative Research: Hierarchical kinetic models for chemically and hydrodynamically coupled organisms
合作研究:化学和流体动力学耦合生物体的分级动力学模型
- 批准号:
1021850 - 财政年份:2010
- 资助金额:
$ 11.87万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
A Shared Neuroscience Platform for National Dissemination and Training in Brain Organogenesis, Behavioral and Brain Disease Models, Viral Vectors, and Imaging Technologies
一个共享神经科学平台,用于脑器官发生、行为和脑疾病模型、病毒载体和成像技术的全国传播和培训
- 批准号:
10647786 - 财政年份:2022
- 资助金额:
$ 11.87万 - 项目类别:
A Shared Neuroscience Platform for National Dissemination and Training in Brain Organogenesis, Behavioral and Brain Disease Models, Viral Vectors, and Imaging Technologies
一个共享神经科学平台,用于脑器官发生、行为和脑疾病模型、病毒载体和成像技术的全国传播和培训
- 批准号:
10439384 - 财政年份:2022
- 资助金额:
$ 11.87万 - 项目类别:
Scalable Inference in Statistical Models of Viral Evolution and Human Health
病毒进化和人类健康统计模型中的可扩展推理
- 批准号:
10394133 - 财政年份:2021
- 资助金额:
$ 11.87万 - 项目类别:
Learning about Viral Epidemics through Engagement with Different Types of Models
通过与不同类型的模型接触来了解病毒流行病
- 批准号:
2101083 - 财政年份:2021
- 资助金额:
$ 11.87万 - 项目类别:
Continuing Grant
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10399134 - 财政年份:2020
- 资助金额:
$ 11.87万 - 项目类别:
Engaging men through HIV self-test and differentiated care models to increase ART initiation and viral suppression in Malawi
通过艾滋病毒自检和差异化护理模式吸引男性参与,以增加马拉维的抗逆转录病毒治疗启动和病毒抑制
- 批准号:
10013734 - 财政年份:2020
- 资助金额:
$ 11.87万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10571939 - 财政年份:2020
- 资助金额:
$ 11.87万 - 项目类别:
Engaging men through HIV self-test and differentiated care models to increase ART initiation and viral suppression in Malawi
通过艾滋病毒自检和差异化护理模式吸引男性参与,以增加马拉维的抗逆转录病毒治疗启动和病毒抑制
- 批准号:
10196965 - 财政年份:2020
- 资助金额:
$ 11.87万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10113533 - 财政年份:2020
- 资助金额:
$ 11.87万 - 项目类别:
Engaging men through HIV self-test and differentiated care models to increase ART initiation and viral suppression in Malawi
通过艾滋病毒自检和差异化护理模式吸引男性参与,以增加马拉维的抗逆转录病毒治疗启动和病毒抑制
- 批准号:
10620317 - 财政年份:2020
- 资助金额:
$ 11.87万 - 项目类别: