Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data

使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测

基本信息

  • 批准号:
    10571939
  • 负责人:
  • 金额:
    $ 57.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-24 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Project Abstract/Summary Our interdisciplinary research team will develop algorithms to accelerate the detection of respiratory virus outbreaks at an unprecedented local scale in US cities. We propose to advance outbreak detection by combining machine learning data integration methods and spatial models of disease transmission. The dynamic models that will be developed will provide mechanistic engines for distinguishing typical from atypical disease trends and the optimization methods evaluate the informativeness of data sources to achieve specified public health goals through the rapid evaluation of diverse input data sources. Working with local healthcare and public health leaders, we will translate the algorithms into user-friendly online tools to support preparedness plans and decision-making. Our proposed research is organized around three major aims. In Aim 1, we will apply machine learning and signal processing methods to build systems that track the earliest indicators of emerging outbreaks within seven US cities. We will evaluate non-clinical data reflecting early and mild symptoms as well as clinical data covering underserved communities and geographic and demographic hotspots for viral emergence. In Aim 2, we will develop sub-city scale models reflecting the syndemics of co-circulating respiratory viruses and chronic respiratory diseases (CRD) that can exacerbate viral infections. We will infer viral transmission rates and socio-environmental risk cofactors by fitting the model to respiratory disease data extracted from millions of electronic health records (EHRs) for the last nine years. We will then partner with clinical and EHR experts to translate our models into the first outbreak detection system for severe respiratory viruses that incorporates EHR data on CRDs. Using machine learning techniques, we will further integrate other surveillance, environmental, behavioral and internet predictor data sources to maximize the accuracy, sensitivity, speed and population coverage of our algorithms. In Aim 3, we will develop an open-access Python toolkit to facilitate the integration of next generation data into outbreak surveillance models. This project will produce practical early warning algorithms for detecting emerging viral threats at high spatiotemporal resolution in several US cities, elucidate socio-geographic gaps in current surveillance systems and hotspots for viral emergence, and provide a robust design framework for extrapolating these algorithms to other US cities.
项目摘要/总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALISON P GALVANI其他文献

ALISON P GALVANI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALISON P GALVANI', 18)}}的其他基金

Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
  • 批准号:
    10399134
  • 财政年份:
    2020
  • 资助金额:
    $ 57.5万
  • 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
  • 批准号:
    10113533
  • 财政年份:
    2020
  • 资助金额:
    $ 57.5万
  • 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
  • 批准号:
    10341179
  • 财政年份:
    2020
  • 资助金额:
    $ 57.5万
  • 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
  • 批准号:
    10265769
  • 财政年份:
    2020
  • 资助金额:
    $ 57.5万
  • 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
  • 批准号:
    9266796
  • 财政年份:
    2013
  • 资助金额:
    $ 57.5万
  • 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
  • 批准号:
    8477594
  • 财政年份:
    2013
  • 资助金额:
    $ 57.5万
  • 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
  • 批准号:
    8698777
  • 财政年份:
    2013
  • 资助金额:
    $ 57.5万
  • 项目类别:
Impacts of Individual and Social Behavior on Influenza Dynamics and Control
个人和社会行为对流感动态和控制的影响
  • 批准号:
    7851274
  • 财政年份:
    2009
  • 资助金额:
    $ 57.5万
  • 项目类别:
Impacts of Individual and Social Behavior on Influenza Dynamics and Control
个人和社会行为对流感动态和控制的影响
  • 批准号:
    8069304
  • 财政年份:
    2009
  • 资助金额:
    $ 57.5万
  • 项目类别:
Dynamic data-driven decision models for infectious disease control
用于传染病控制的动态数据驱动决策模型
  • 批准号:
    8703900
  • 财政年份:
    2009
  • 资助金额:
    $ 57.5万
  • 项目类别:

相似海外基金

EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了