Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
基本信息
- 批准号:10571939
- 负责人:
- 金额:$ 57.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-24 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AbsenteeismAccelerationAddressAfricanAgeAlgorithm DesignAlgorithmsAreaArticulationBayesian MethodBehavioralCaringChronicChronic DiseaseCitiesClimateClinicalClinical DataCollaborationsCommunicable DiseasesDataData SourcesDecision MakingDetectionDiseaseDisease OutbreaksDisease SurveillanceDisease modelEbolaElectronic Health RecordEnsureEpidemicEvaluationGeographyGoalsHealthHealthcareHomeHumanIndividualInfectionInfluenzaInfluenza A Virus, H1N1 SubtypeInterdisciplinary StudyInternationalInternetInterventionLocationMachine LearningMedicalMethodologyMethodsMexicoModelingNeighborhoodsOutcomePollutionPopulationPreventionProliferatingPublic HealthPythonsReadinessReportingResearchResolutionRespiratory DiseaseRiskRuralSchoolsSeasonsSentinelSeriesSignal TransductionSocial EnvironmentSpecific qualifier valueSpeedSubgroupSurveillance ModelingSymptomsSystemTechniquesTestingTimeTranslatingUncertaintyValidationViralVirusVirus DiseasesVisualizationWorkWorld Health Organizationaccess disparitiesaustinchronic respiratory diseasecofactorcomorbiditydashboarddata acquisitiondata handlingdata integrationdesigndetection methoddetection platformdigitaldisease transmissiondiverse dataelectronic health record systemepidemiologic dataepidemiological modelexperimental studyflexibilityglobal healthhealth care availabilityhealth goalshigh riskhigh risk populationimprovedinfluenza outbreakinfluenzavirusinnovationinsightmetropolitannew outbreaknext generationnovelpandemic diseasepublic health interventionrespiratory virusschool districtsignal processingsimulationsocial mediasociodemographic groupsocioeconomicssoundspatiotemporalstemsyndemictooltransmission processtrendunderserved communityuser-friendlyviral outbreakviral transmission
项目摘要
Project Abstract/Summary
Our interdisciplinary research team will develop algorithms to accelerate the detection of respiratory virus
outbreaks at an unprecedented local scale in US cities. We propose to advance outbreak detection by
combining machine learning data integration methods and spatial models of disease transmission. The
dynamic models that will be developed will provide mechanistic engines for distinguishing typical from
atypical disease trends and the optimization methods evaluate the informativeness of data sources to
achieve specified public health goals through the rapid evaluation of diverse input data sources. Working
with local healthcare and public health leaders, we will translate the algorithms into user-friendly online tools
to support preparedness plans and decision-making.
Our proposed research is organized around three major aims. In Aim 1, we will apply machine learning and
signal processing methods to build systems that track the earliest indicators of emerging outbreaks within
seven US cities. We will evaluate non-clinical data reflecting early and mild symptoms as well as clinical data
covering underserved communities and geographic and demographic hotspots for viral emergence. In Aim
2, we will develop sub-city scale models reflecting the syndemics of co-circulating respiratory viruses and
chronic respiratory diseases (CRD) that can exacerbate viral infections. We will infer viral transmission rates
and socio-environmental risk cofactors by fitting the model to respiratory disease data extracted from
millions of electronic health records (EHRs) for the last nine years. We will then partner with clinical and
EHR experts to translate our models into the first outbreak detection system for severe respiratory viruses
that incorporates EHR data on CRDs. Using machine learning techniques, we will further integrate other
surveillance, environmental, behavioral and internet predictor data sources to maximize the accuracy,
sensitivity, speed and population coverage of our algorithms. In Aim 3, we will develop an open-access
Python toolkit to facilitate the integration of next generation data into outbreak surveillance models.
This project will produce practical early warning algorithms for detecting emerging viral threats at high
spatiotemporal resolution in several US cities, elucidate socio-geographic gaps in current surveillance
systems and hotspots for viral emergence, and provide a robust design framework for extrapolating these
algorithms to other US cities.
项目摘要/总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALISON P GALVANI其他文献
ALISON P GALVANI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALISON P GALVANI', 18)}}的其他基金
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10399134 - 财政年份:2020
- 资助金额:
$ 57.5万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10113533 - 财政年份:2020
- 资助金额:
$ 57.5万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10341179 - 财政年份:2020
- 资助金额:
$ 57.5万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10265769 - 财政年份:2020
- 资助金额:
$ 57.5万 - 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
- 批准号:
9266796 - 财政年份:2013
- 资助金额:
$ 57.5万 - 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
- 批准号:
8477594 - 财政年份:2013
- 资助金额:
$ 57.5万 - 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
- 批准号:
8698777 - 财政年份:2013
- 资助金额:
$ 57.5万 - 项目类别:
Impacts of Individual and Social Behavior on Influenza Dynamics and Control
个人和社会行为对流感动态和控制的影响
- 批准号:
7851274 - 财政年份:2009
- 资助金额:
$ 57.5万 - 项目类别:
Impacts of Individual and Social Behavior on Influenza Dynamics and Control
个人和社会行为对流感动态和控制的影响
- 批准号:
8069304 - 财政年份:2009
- 资助金额:
$ 57.5万 - 项目类别:
Dynamic data-driven decision models for infectious disease control
用于传染病控制的动态数据驱动决策模型
- 批准号:
8703900 - 财政年份:2009
- 资助金额:
$ 57.5万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 57.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




