Assessing Atmospheric Predictability with a Global Analysis-Forecast System

使用全球分析预报系统评估大气可预测性

基本信息

  • 批准号:
    0722721
  • 负责人:
  • 金额:
    $ 38.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2009-09-30
  • 项目状态:
    已结题

项目摘要

The focus of this research is on atmospheric predictability at the upper ranges of deterministic forecasting (up to about two weeks). The study will use data assimilation based on the Local Ensemble Transform Kalman Filter method to examine the impact of observations on forecasts, and in particular to determine a priori the most needed locations for specific measurements ("targeted observations") to improve forecasts. This research extends previous work in perfect model scenarios (comparing models to models) to more realistic applications (forcast models versus real world). The study will also examine the predictability time limits for different circulation regimes, investigate seasonal effects on predictability, and assess the impacts of observations collected in the upcoming THORPEX Pacific Asian Regional Campaign (T-PARC) on forecasts. The study will use a recent operational version of the Global Forecast System model of the National Centers for Environmental Prediction. The fruits of the research have the possibility to improve forecasting by pinpointing where additional observations are most useful, thereby optimizing deployable resources. The use of an operational forecast model should ease the transition of knowledge from the basic research phase to operations. A graduate student will be supported and involved in the research.
这项研究的重点是在确定性预报的上限范围(最多约两周)的大气可预报性。 这项研究将使用基于局部包络变换卡尔曼滤波方法的数据同化,以审查观测对预报的影响,特别是事先确定最需要进行具体测量的地点(“目标观测”),以改进预报。 这项研究扩展了以前的工作,在完美的模型场景(比较模型的模型)更现实的应用程序(预测模型与真实的世界)。 研究亦会探讨不同环流系统的可预测性时限,调查季节性对可预测性的影响,以及评估即将进行的太平洋亚洲区域活动(T-PARC)所收集的观测资料对预测的影响。 这项研究将使用国家环境预报中心全球预报系统模型的最新运行版本。 研究的成果有可能通过精确定位额外观测最有用的地方来改进预测,从而优化可部署的资源。 业务预测模型的使用应便于知识从基础研究阶段向业务的过渡。 一名研究生将得到支持并参与研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Istvan Szunyogh其他文献

Istvan Szunyogh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Istvan Szunyogh', 18)}}的其他基金

The Effect of Model Uncertainty and Error on the Forecast Uncertainty
模型不确定性和误差对预测不确定性的影响
  • 批准号:
    1237613
  • 财政年份:
    2012
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Standard Grant
Assessing Atmospheric Predictability with a Global Analysis-Forecast System
使用全球分析预报系统评估大气可预测性
  • 批准号:
    0935538
  • 财政年份:
    2009
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: El Nino/Southern Oscillation (ENSO) Predictability--Initial Condition Signal versus Uncoupled Atmospheric Noise
合作研究:厄尔尼诺/南方涛动 (ENSO) 可预测性 - 初始条件信号与非耦合大气噪声
  • 批准号:
    2241538
  • 财政年份:
    2023
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Standard Grant
Collaborative Research: El Nino/Southern Oscillation (ENSO) Predictability--Initial Condition Signal versus Uncoupled Atmospheric Noise
合作研究:厄尔尼诺/南方涛动 (ENSO) 可预测性 - 初始条件信号与非耦合大气噪声
  • 批准号:
    2241539
  • 财政年份:
    2023
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Standard Grant
EAGER: Exploring Applications of Graph Theory for Improved Understanding and Predictability of Atmospheric Chemistry
EAGER:探索图论的应用以提高对大气化学的理解和可预测性
  • 批准号:
    2228923
  • 财政年份:
    2022
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Standard Grant
Mechanisms and predictability of subseasonal variability of atmospheric rivers focusing on Madden-Julian Oscillation
以马登-朱利安振荡为中心的大气河流次季节变化的机制和可预测性
  • 批准号:
    20K14833
  • 财政年份:
    2020
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the mechanisms using water isotopes ratio and improving the predictability through satellite data assimilation of heavy rainfall associated with atmospheric rivers
利用水同位素比研究机制并通过卫星数据同化与大气河流相关的强降雨提高可预测性
  • 批准号:
    19J01337
  • 财政年份:
    2019
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Dynamics and predictability of atmospheric blocking occurrence
大气阻塞发生的动力学和可预测性
  • 批准号:
    18K03734
  • 财政年份:
    2018
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: A Novel Theoretical Study of Mid-latitude Atmospheric Predictability
EAGER:中纬度大气可预测性的新颖理论研究
  • 批准号:
    1649457
  • 财政年份:
    2016
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Standard Grant
Predictability of weather regime-related atmospheric phenomena
与天气状况相关的大气现象的可预测性
  • 批准号:
    16K16378
  • 财政年份:
    2016
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
RAPID: Predictability of Atmospheric Teleconnections in Initialized Decadal Forecasts
RAPID:初始年代际预报中大气遥相关的可预测性
  • 批准号:
    1125561
  • 财政年份:
    2011
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Standard Grant
The predictability of atmospheric blocking in global ensemble prediction systems
全球集合预测系统中大气阻塞的可预测性
  • 批准号:
    197372983
  • 财政年份:
    2011
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Research Units
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了