Efficient Methods for Automatic Recognition With Application to Target Identification

有效的自动识别方法及其在目标识别中的应用

基本信息

  • 批准号:
    0728929
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

The objective of the investigator's research is to learn how to encode the organization of complex structures for efficient classification, recognition and browsing. Complex structures such as objects, images, 3D scans and web documents are considered. The focus of the investigation is on very large datasets (e.g., several millions). Because of computational issues, such large sizes cannot be handled by existing browsing methods. As part of this research, theoretical tools and methods for addressing these issues are being developed; these tools and methods are then applied to the problem of automatically identifying a target from 3-D imaging Laser Radar (Ladar) measurements. The difficulty of indexing a large database for geometry/structure-based queries is mostly due to two factors: 1) The inherent conflict between speed and accuracy, and 2) The curse of dimensionality. The structure representations that are being developed by the investigator, which are based on invariant statistics, address these difficulties. First of all, they are fully invariant and so they allow fast data comparison by bypassing the problem of finding the best mapping between two structures. Secondly, for a generic structure, they are lossless, and so they do not compromise accuracy. Moreover, they allow for low complexity metrics, thus yielding fast comparison algorithms that are almost surely 100% accurate (as opposed to approximate algorithms, which are always approximate.) In addition, as they contain no ambiguity, it is possible to index them with high-dimensional indexing techniques that address the curse of dimensionality. Finally, they are floating-point arithmetic and low-level data friendly.
研究人员的研究目标是学习如何对复杂结构的组织进行编码,以实现有效的分类,识别和浏览。复杂的结构,如对象,图像,3D扫描和Web文档被认为是。调查的重点是非常大的数据集(例如,几百万)。由于计算问题,现有的浏览方法无法处理如此大的尺寸。 作为这项研究的一部分,正在开发解决这些问题的理论工具和方法,然后将这些工具和方法应用于从3-D成像激光雷达(激光雷达)测量中自动识别目标的问题。为基于几何/结构的查询索引大型数据库的困难主要是由于两个因素:1)速度和准确性之间的内在冲突,以及2)维数灾难。研究人员正在开发的基于不变统计的结构表示解决了这些困难。首先,它们是完全不变的,因此它们允许通过绕过找到两个结构之间的最佳映射的问题来进行快速数据比较。其次,对于通用结构,它们是无损的,因此它们不会损害准确性。此外,它们允许低复杂度度量,从而产生几乎肯定100%准确的快速比较算法(与近似算法相反,近似算法总是近似的)。此外,由于它们不包含歧义,因此可以使用解决维度灾难的高维索引技术对其进行索引。最后,它们是浮点运算和低级数据友好的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mireille Boutin其他文献

On the Rashomon ratio of infinite hypothesis sets
关于无限假设集的罗生门比率
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Evzenie Coupkova;Mireille Boutin
  • 通讯作者:
    Mireille Boutin
Beyond analytics: Using computer‐aided methods in educational research to extend qualitative data analysis
超越分析:在教育研究中使用计算机辅助方法来扩展定性数据分析

Mireille Boutin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mireille Boutin', 18)}}的其他基金

Research: A Mixed-Methods Approach to Characterizing Engineering Students' Computational Habits of Mind
研究:表征工科学生计算思维习惯的混合方法
  • 批准号:
    1826099
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Research Initiation: Investigating Engineering Students Habits of Mind: A Case Study Approach
研究启动:调查工科学生的思维习惯:案例研究方法
  • 批准号:
    1544244
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Automatic Methods for Knowledge Graph Construction using Ontology-based Context Management
使用基于本体的上下文管理的知识图谱自动构建方法
  • 批准号:
    23H03462
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New methods for automatic quality assessments of medical image registration
医学图像配准自动质量评估的新方法
  • 批准号:
    DGECR-2022-00113
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Launch Supplement
New methods for automatic quality assessments of medical image registration
医学图像配准自动质量评估的新方法
  • 批准号:
    RGPIN-2022-05100
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Establishment of new goinoscopic methods and development of automatic analysis algorithms using 360-degree gonioscopic images
建立新的前房角镜方法并开发使用360度前房角镜图像的自动分析算法
  • 批准号:
    20K18382
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
System for Automatic and Real-time Generalization of Catastrophe Maps based on Deep Learning Methods
基于深度学习方法的巨灾图自动实时概括系统
  • 批准号:
    19J13500
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research on improving automatic ECG waveform analysis using AI methods
利用人工智能方法改进自动心电波形分析的研究
  • 批准号:
    19K12201
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automatic synthesis of memory access optimization programs synergistically coordinated with deep learning and empirical methods
与深度学习和经验方法协同协调的内存访问优化程序的自动合成
  • 批准号:
    19K11874
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STTR Phase I: Microscope-based Technology For Automatic Brain Cell Counts Using Unbiased Methods
STTR 第一阶段:基于显微镜的技术,使用无偏差方法进行自动脑细胞计数
  • 批准号:
    1746511
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Theoretical and applied research on automatic derivation of statistical analysis methods
统计分析方法自动推导的理论与应用研究
  • 批准号:
    16K00056
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on automatic layout methods considering wire delay for superconductive digital circuits
考虑线路延迟的超导数字电路自动布局方法研究
  • 批准号:
    16K16029
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了