New methods for automatic quality assessments of medical image registration

医学图像配准自动质量评估的新方法

基本信息

  • 批准号:
    RGPIN-2022-05100
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

As one of the most common tasks in computer vision and image processing, image registration is the procedure of aligning two pictures so that their corresponding features can be spatially matched. In the applications of radiological diagnosis, surgical planning, and medical image analysis, the requirement of accurate registration between medical scans is ubiquitous and crucial for the patient's safety, treatment outcomes, and reliability of image-based research into the mechanisms of diseases. Automatic registration algorithms are commonly used. However, sub-optimal results that may lead to adverse and even fatal consequences can still occur while quality control primarily relies on subjective visual inspection largely due to the absence of ground truths. Therefore, effective automatic techniques to assess and visualize registration errors and uncertainties are highly valuable, but are still under-explored. Currently, there are three main challenges in the assessment of medical image registration quality. First, the quality of a registration is often difficult to evaluate in the absence of ground truths (e.g., matching anatomical landmarks and structural segmentation between images), but these are time-consuming to produce and subject to rater-dependent variability. Second, automatic techniques in registration quality assessment for inter-modal and inter-contrast alignment are rare. Lastly, specialized methods are needed to quantify and visualize registration quality for deep-learning-based image registration algorithms to improve their interpretability. The proposed research program will tackle these challenges and develop novel techniques to provide efficient and robust assessment of medical image registration quality. More specifically, we will propose new methods for automatic anatomical landmark identification, devise learning-based techniques to directly predict registration errors, and establish novel frameworks that can quantify and visualize registration uncertainties for deep-learning-based registration algorithms. The proposed research will meet the urgent needs for robust methods to quantify and visualize image registration quality for the development and validation of new image registration algorithms. In the applications of patient care and disease analyses, the resulting methods are expected to provide fast feedback to the end users for the results from automatic image registration software to ensure the accuracy of disease diagnoses, patient safety in image-guided surgery, and reliability of big data analyses involving radiological scans.
图像配准是计算机视觉和图像处理中最常见的任务之一,它是将两幅图像对齐,使其对应的特征在空间上匹配的过程。在放射诊断、手术计划和医学图像分析的应用中,医学扫描之间的准确配准的要求是普遍存在的,并且对于患者的安全、治疗结果和基于图像的疾病机制研究的可靠性至关重要。通常使用自动配准算法。然而,当质量控制主要依赖于主观目视检查时,由于缺乏基本事实,仍然可能出现可能导致不利甚至致命后果的次优结果。因此,有效的自动技术来评估和可视化配准误差和不确定性是非常有价值的,但仍然是探索不足。目前,医学图像配准质量评价主要存在三个方面的问题。首先,在缺乏基本事实的情况下,通常难以评估配准的质量(例如,匹配解剖学标志和图像之间的结构分割),但是这些产生起来是耗时的,并且受到与评价者相关的可变性的影响。其次,自动技术在配准质量评估的模态间和对比度间对齐是罕见的。最后,需要专门的方法来量化和可视化基于深度学习的图像配准算法的配准质量,以提高其可解释性。拟议的研究计划将解决这些挑战,并开发新的技术,以提供有效和强大的评估医学图像配准质量。更具体地说,我们将提出自动解剖标志识别的新方法,设计基于学习的技术来直接预测配准误差,并建立新的框架,可以量化和可视化基于深度学习的配准算法的配准不确定性。该研究将满足对稳健方法的迫切需求,以量化和可视化图像配准质量,用于开发和验证新的图像配准算法。在患者护理和疾病分析的应用中,所得到的方法有望为最终用户提供自动图像配准软件结果的快速反馈,以确保疾病诊断的准确性,图像引导手术中的患者安全性以及涉及放射扫描的大数据分析的可靠性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao, Yiming其他文献

Evaluating intensity normalization on MRIs of human brain with multiple sclerosis
  • DOI:
    10.1016/j.media.2010.12.003
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Shah, Mohak;Xiao, Yiming;Arbel, Tal
  • 通讯作者:
    Arbel, Tal
Population-averaged MRI atlases for automated image processing and assessments of lumbar paraspinal muscles
  • DOI:
    10.1007/s00586-018-5704-z
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xiao, Yiming;Fortin, Maryse;Rivaz, Hassan
  • 通讯作者:
    Rivaz, Hassan
Hollow-core pear-shaped conjoined-tube fiber with low loss in the ultraviolet band.
  • DOI:
    10.1016/j.heliyon.2023.e19412
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Cheng, Yu;Pan, Yu;Liu, Houquan;Xiao, Yiming;Deng, Shijie;Teng, Chuanxin;Yang, Hongyan;Deng, Hongchang;Yuan, Libo
  • 通讯作者:
    Yuan, Libo
ARENA: Inter-modality affine registration using evolutionary strategy
An accurate registration of the BigBrain dataset with the MNI PD25 and ICBM152 atlases
  • DOI:
    10.1038/s41597-019-0217-0
  • 发表时间:
    2019-10-17
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Xiao, Yiming;Lau, Jonathan C.;Khan, Ali R.
  • 通讯作者:
    Khan, Ali R.

Xiao, Yiming的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao, Yiming', 18)}}的其他基金

New methods for automatic quality assessments of medical image registration
医学图像配准自动质量评估的新方法
  • 批准号:
    DGECR-2022-00113
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

User-friendly Analysis Platform for Decentralized Multi-site Diffusion MRI Studies
用于分散式多站点扩散 MRI 研究的用户友好分析平台
  • 批准号:
    10724720
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Automatic Methods for Knowledge Graph Construction using Ontology-based Context Management
使用基于本体的上下文管理的知识图谱自动构建方法
  • 批准号:
    23H03462
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Automatic identification of early bone loss patterns from radiographs invisible to human eyes for early periodontal disease diagnosis and prevention
从人眼看不见的射线照片中自动识别早期骨质流失模式,用于早期牙周病的诊断和预防
  • 批准号:
    10723693
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
AddBiomechanics: Automatic Processing and Sharing of Human Movement Data
AddBiomechanics:人体运动数据的自动处理和共享
  • 批准号:
    10743411
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Development of Low-Cost Automatic Machine for In-House Fabrication of Custom Microwire-Based Microelectrode Arrays for Electrophysiology Recordings
开发低成本自动机器,用于内部制造用于电生理学记录的定制微线微电极阵列
  • 批准号:
    10730576
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
A State-of-the-Art Automatic Speech Recognition and Conversational Platform to Enable Socially Assistive Robots for Persons with Alzheimer's Disease and Related Dementias
最先进的自动语音识别和对话平台,为阿尔茨海默病和相关痴呆症患者提供社交辅助机器人
  • 批准号:
    10699887
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Mount Sinai HHEAR Network Targeted Lab Hub
西奈山 HHEAR 网络目标实验室中心
  • 批准号:
    10875017
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Closing the loop with an automatic referral population and summarization system
通过自动转介人群和汇总系统形成闭环
  • 批准号:
    10720778
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Development of an automatic real-time personalized non-invasive localization of the site of origin of the earliest ventricular activation
开发最早心室激动起源部位的自动实时个性化无创定位
  • 批准号:
    10579726
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Automatic detection of vaping rate and patterning in the lab and the natural environment using Flexible, Robust Instrumentation of Electronic Nicotine Delivery Systems (FRIENDS)
使用灵活、稳健的电子尼古丁输送系统 (FRIENDS) 仪器自动检测实验室和自然环境中的吸烟率和模式
  • 批准号:
    10516860
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了