Multiscale Modeling, Optimization, and Control of Microstructural Evolution
微观结构演化的多尺度建模、优化和控制
基本信息
- 批准号:0730971
- 负责人:
- 金额:$ 34.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Talid R. Sinno and Warren SeiderInstitution: University of Pennsylvania Proposal Number: 0730971Title: Adaptive Multiscale Modeling, Optimization, and Control of Microstructural EvolutionIncreasingly powerful computational resources and new algorithms have extended the application horizon of multiscale modeling, in which atomic scale phenomena are linked to macroscopic processing conditions. The aim of this project is to develop a hierarchical, multiscale-modeling framework suitable for use in repeated execution environments, such as process optimization and feedback control. This objective is becoming increasingly relevant as tolerances with respect to fluctuations in the spatial distribution of atomic species become tighter during the processing of advanced materials. Two classes of microstructural evolution will be considered in this project: (1) atomic aggregation in bulk crystalline semiconductor materials, including silicon, germanium, and silicon-germanium, and (2) species redistribution/segregation and phase separation in multilayered metallic alloys, such as copper-nickel, which are model systems for magnetic storage media.Intellectual Merit: The project has both synthetic and integrative elements. Several contemporary multiscale modeling challenges will be addressed in order to construct a highly adaptive, coarse-grained lattice kinetic Monte Carlo simulation framework. The first aim will be to develop novel lattice kinetic Monte Carlo (LKMC) simulations that implicitly account for complex off-lattice rearrangements in real systems, particularly at the elevated temperatures common in semiconductor and metals processing. This will be accomplished by systematic comparison to data generated by large-scale equilibrium and non-equilibrium molecular dynamics simulations. The resulting "MD matched" LKMC simulations will then be implemented within recently introduced coarse-graining strategies that allow for systematic order-reduction with controlled error. A key outcome of this work will be strategies for applying this coarse-graining framework to LKMC simulations with complex interactions between multiple species. The coarse-graining will be implemented within a fully adaptive framework in which the degree of coarse-graining is adjusted dynamically in space and time as dictated by the evolving microstructure of the system as well as the resolution needs of the overall control/optimization environment. Many of the phenomena under consideration have been studied experimentally, and in the case of silicon, an ongoing collaboration with industry provides access to detailed microscopic data related to aggregate morphology as a function of thermochemical processing environment.Broader Impacts: The material systems and microstructural evolution phenomena considered in this project are of fundamental interest in their own right but also are prototypical examples of a broad class of problems. Nucleation and growth of atomic clusters, and diffusion in spatially heterogeneous environments are cornerstone phenomena in a large number of processes related to the fabrication of advanced devices and materials. The project will bring together several aspects of multiscale modeling and integrate them into a control environment with the aim of developing a prototypical framework for multiscale optimization and control. The model developments will be applicable to a wide variety of processes and materials. For example, the adaptive coarse-grained LKMC method is an extremely powerful general approach that is multiscale without being highly system specific. The project will bring together elements from two traditionally different research areas and couple them closely. Large-scale molecular dynamics and basic kinetic Monte Carlo codes are already in place, allowing the graduate student working on this project to focus on novel aspects such as adaptive coarse-graining and integration of the optimization and control components with the multiscale models. The basic ideas of the project will be used to develop educational materials related to the Chemical and Biomolecular Engineering (CBE) senior design course at Penn. The development of new design projects that go beyond traditional chemicals processing into this course by the PI has been highly successful thus far. For example, recent projects have involved the design of chemical vapor deposition processes using finite element modeling, but no attempt has yet been made to include atomic-scale modeling. This work should provide a basis for creating design modules based on the optimization of microscopic objective functions and would represent yet another significant step in the evolution of the CBE capstone course.
PI:Talid R.Sinno和Warren SeiderInstitution:宾夕法尼亚大学提案编号:0730971标题:自适应多尺度建模、优化和微观结构演化控制日益强大的计算资源和新算法扩展了多尺度建模的应用范围,在多尺度建模中,原子尺度现象与宏观加工条件相联系。这个项目的目的是开发一个分层的、多尺度的建模框架,适用于重复执行环境,如过程优化和反馈控制。随着先进材料加工过程中对原子物种空间分布波动的容差变得更加严格,这一目标正变得越来越重要。该项目将考虑两类微结构演化:(1)大块晶体半导体材料中的原子聚集,包括硅、锗和硅锗;(2)多层金属合金中的物种重新分布/偏析和相分离,它们是磁存储介质的模型系统。为了构建一个高度自适应的、粗粒度的格子动力学蒙特卡罗模拟框架,将解决几个当代的多尺度建模挑战。第一个目标是开发新的晶格动力学蒙特卡罗(LKMC)模拟,隐含地解释真实系统中复杂的非晶格重排,特别是在半导体和金属加工中常见的高温下。这将通过与大规模平衡和非平衡分子动力学模拟产生的数据进行系统比较来实现。由此产生的“MD匹配”LKMC模拟将在最近引入的粗粒化策略中实施,该策略允许在控制误差的情况下进行系统降阶。这项工作的一个关键成果将是将这个粗粒化框架应用于具有多个物种之间复杂相互作用的LKMC模拟的策略。粗粒化将在完全自适应的框架内实施,其中粗粒化的程度在空间和时间上根据系统不断演变的微观结构以及总体控制/优化环境的解决需要而动态调整。许多正在考虑的现象都经过了实验研究,在硅的情况下,与工业界的持续合作提供了与作为热化学处理环境的函数的聚集形态相关的详细微观数据的访问。广泛的影响:本项目中考虑的材料系统和微观结构演变现象本身是基本感兴趣的,但也是一大类问题的典型例子。原子团簇的成核和生长以及在空间非均匀环境中的扩散是与先进器件和材料制造相关的大量工艺中的基石现象。该项目将汇集多尺度建模的几个方面,并将它们整合到一个控制环境中,目的是开发一个多尺度优化和控制的原型框架。模型开发将适用于各种工艺和材料。例如,自适应粗粒度LKMC方法是一种非常强大的通用方法,它是多尺度的,而不是高度特定于系统的。该项目将汇集来自两个传统上不同研究领域的元素,并将它们紧密结合在一起。大规模分子动力学和基本动力学蒙特卡罗代码已经到位,使从事该项目的研究生能够专注于新的方面,如自适应粗粒化以及优化和控制组件与多尺度模型的集成。该项目的基本思想将用于开发与宾夕法尼亚大学化学和生物分子工程(CBE)高级设计课程相关的教材。到目前为止,PI开发的新设计项目超越了传统的化学品加工,进入了这一课程,取得了极大的成功。例如,最近的项目涉及使用有限元建模设计化学气相沉积过程,但尚未尝试包括原子尺度的建模。这项工作应为在优化微观目标函数的基础上创建设计模块提供基础,并将是CBE顶峰过程发展的又一重大步骤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Talid Sinno其他文献
Configurational entropy significantly influences point defect thermodynamics and diffusion in crystalline silicon
构型熵显着影响晶体硅中的点缺陷热力学和扩散
- DOI:
10.1103/physrevmaterials.6.064603 - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Jinping Luo;Chenyang Zhou;Yunjie Cheng;Qihang Li;Lijun Liu;Jack F. Douglas;Talid Sinno - 通讯作者:
Talid Sinno
Talid Sinno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Talid Sinno', 18)}}的其他基金
Collaborative Research: Atomic Displacement Engineering of Post-epitaxial Thin-films (ADEPT)
合作研究:外延后薄膜原子位移工程(ADEPT)
- 批准号:
1808065 - 财政年份:2018
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Data-Driven Predictive Modeling of Flows Containing Aggregating Particles
CDS
- 批准号:
1404826 - 财政年份:2014
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
Collaborative Research: Large-Scale Patterning of Germanium Quantum Dots by Stress Transfer
合作研究:通过应力传递实现锗量子点的大规模图案化
- 批准号:
1068841 - 财政年份:2011
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
Collaborative Proposal: Low-Cost Substrates for III-V Photovoltaics by Self-Templated Selective Epitaxial Growth of Germanium on Silicon
合作提案:通过硅上锗的自模板选择性外延生长实现低成本 III-V 光伏衬底
- 批准号:
0907365 - 财政年份:2009
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
Rational Self-Assembly of Ordered Nanoparticle Composites using DNA Interactions
利用 DNA 相互作用合理自组装有序纳米粒子复合材料
- 批准号:
0829045 - 财政年份:2008
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
NIRT: Directed Assembly of Nanostructures: Theory, Simulations, and Experiments in Hard and Soft Materials
NIRT:纳米结构的定向组装:硬材料和软材料的理论、模拟和实验
- 批准号:
0404259 - 财政年份:2004
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
CAREER: Systematic Multiscale Modeling of Directed Assembly in Semiconductor Materials Processing
职业:半导体材料加工中定向组装的系统多尺度建模
- 批准号:
0134418 - 财政年份:2002
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CDS&E/Collaborative Research: In-Situ Monitoring-Enabled Multiscale Modeling and Optimization for Environmental and Mechanical Performance of Advanced Manufactured Materials
CDS
- 批准号:
2245107 - 财政年份:2023
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: In-Situ Monitoring-Enabled Multiscale Modeling and Optimization for Environmental and Mechanical Performance of Advanced Manufactured Materials
CDS
- 批准号:
2245106 - 财政年份:2023
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
Towards Multiscale Modeling and Optimization in Design of Polymer Blend Nanocomposites
聚合物共混纳米复合材料设计中的多尺度建模和优化
- 批准号:
RGPIN-2014-06476 - 财政年份:2019
- 资助金额:
$ 34.59万 - 项目类别:
Discovery Grants Program - Individual
Towards Multiscale Modeling and Optimization in Design of Polymer Blend Nanocomposites
聚合物共混纳米复合材料设计中的多尺度建模和优化
- 批准号:
RGPIN-2014-06476 - 财政年份:2018
- 资助金额:
$ 34.59万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Modeling, Simulation and Optimization of Cutting Tools Regarding their Tribological Behavior (C06*)
切削刀具摩擦学行为的多尺度建模、仿真和优化 (C06*)
- 批准号:
408212730 - 财政年份:2018
- 资助金额:
$ 34.59万 - 项目类别:
Collaborative Research Centres
Towards Multiscale Modeling and Optimization in Design of Polymer Blend Nanocomposites
聚合物共混纳米复合材料设计中的多尺度建模和优化
- 批准号:
RGPIN-2014-06476 - 财政年份:2017
- 资助金额:
$ 34.59万 - 项目类别:
Discovery Grants Program - Individual
Towards Multiscale Modeling and Optimization in Design of Polymer Blend Nanocomposites
聚合物共混纳米复合材料设计中的多尺度建模和优化
- 批准号:
RGPIN-2014-06476 - 财政年份:2016
- 资助金额:
$ 34.59万 - 项目类别:
Discovery Grants Program - Individual
Towards Multiscale Modeling and Optimization in Design of Polymer Blend Nanocomposites
聚合物共混纳米复合材料设计中的多尺度建模和优化
- 批准号:
RGPIN-2014-06476 - 财政年份:2015
- 资助金额:
$ 34.59万 - 项目类别:
Discovery Grants Program - Individual
Towards Multiscale Modeling and Optimization in Design of Polymer Blend Nanocomposites
聚合物共混纳米复合材料设计中的多尺度建模和优化
- 批准号:
RGPIN-2014-06476 - 财政年份:2014
- 资助金额:
$ 34.59万 - 项目类别:
Discovery Grants Program - Individual
CDS&E:Collaborative Research: Multiscale Modeling, Simulation and Optimization for Designing Organic Solar Cells
CDS
- 批准号:
1404591 - 财政年份:2014
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant