Collaborative Research: Atomic Displacement Engineering of Post-epitaxial Thin-films (ADEPT)

合作研究:外延后薄膜原子位移工程(ADEPT)

基本信息

  • 批准号:
    1808065
  • 负责人:
  • 金额:
    $ 26.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: The advent of modern epitaxial semiconductor technologies has resulted in a paradigm shift in optoelectronic and electronic device fabrication. Specifically, the control of semiconductor layer thickness to within a single atomic layer and the creation of multiple, abrupt interfaces between two different semiconductor materials have led to the realization of a host of structures that are key elements in modern lasers, detectors and transistors. However, to date, precise control of chemical composition in heteroepitaxial semiconductor assemblies has been limited to the growth direction - the next leap in the evolution of semiconductor structures will be to realize precise control of composition in all three dimensions, opening routes to optoelectronic building blocks for new technologies, such as quantum computing and cryptography. This project seeks to achieve this goal by using mechanical forces induced by nano-indentation to laterally control chemical composition in semiconductor heterostructures created with existing epitaxial technology. The project integrates experimental measurements of chemical composition and structure at the nanoscale with multiscale computer modeling of atomic diffusion. Using computer models that have been partially informed by specifically tailored experiments, the team explores a broad parameter space and identifies the necessary operating conditions needed to efficiency and robustly drive atomic diffusion. If successful, the outcome of this project could pave the roadmap for creating a new class of semiconductor structures with broad potential applications. The project serves as a multidisciplinary home for training graduate and undergraduate students at both participating institutions. Undergraduate research opportunities for underrepresented groups is a special emphasis whereby students identified at the University of New Mexico are recruited into summer research opportunities at the University of Pennsylvania.Technical Description: In this project, the research team investigates a new strategy for laterally defining nanoscale compositional patterns in epitaxially-grown III-V semiconductor systems. This multistep strategy is referred to as Atomic-Displacement Engineering of Post-epitaxial Thin-films, or ADEPT, which, coupled with traditional heteroepitaxial methods, may provide a practical pathway for creating three-dimensional quantum barrier configurations with a high degree of controllability. The ADEPT approach employs spatially patterned stress fields and thermal annealing to drive diffusion in a compound semiconductor alloy film comprised of two mobile atomic species with different sizes and diffusional responses to elastic stress. The stress fields are applied by pressing a reusable, pre-patterned array of nanopillars against the semiconductor substrate. Notably, the "press-and-print" ADEPT strategy does not rely on nucleation and growth of sub-phases that are difficult to control and is applicable to any material system in which two mobile atomic species of different sizes are present. The team has recently demonstrated the ADEPT approach in SiGe and here investigates its broader application to III-V heteroepitaxial systems, namely InGaAs and GaAsSb, both supported on InP. In contrast to SiGe, atomic diffusivities in these materials is not fully characterized, particularly as a function of temperature and elastic stress, preventing predictive modeling and the ability to fully explore the ADEPT process. The research activity seeks to overcome the obstacles posed by a large process parameter space and limited experimental throughput with a two-step, computer-aided experimental design approach. In the first stage, data-assisted models are developed using a sequence of relatively "simple" experiments specifically designed to generate information for parameterizing models for interdiffusion in III-V materials. In the second stage, the parameterized models are used to explore the multidimensional parameter space and identify suitable conditions for performing experimental demonstrations of the ADEPT process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:现代外延半导体技术的出现导致了光电和电子器件制造的范式转变。具体而言,将半导体层厚度控制在单个原子层内以及在两种不同半导体材料之间产生多个突变界面已经导致实现了许多结构,这些结构是现代激光器、检测器和晶体管中的关键元件。然而,迄今为止,异质外延半导体组件中化学成分的精确控制仅限于生长方向-半导体结构演变的下一个飞跃将是实现所有三个维度的成分精确控制,为量子计算和密码学等新技术开辟光电构建模块的路线。该项目旨在通过使用纳米压痕引起的机械力来横向控制用现有外延技术创建的半导体异质结构中的化学成分来实现这一目标。该项目将纳米级化学成分和结构的实验测量与原子扩散的多尺度计算机建模相结合。使用部分由专门定制的实验提供信息的计算机模型,该团队探索了广泛的参数空间,并确定了有效和稳健地驱动原子扩散所需的必要操作条件。如果成功,该项目的成果将为创建具有广泛潜在应用的新型半导体结构铺平道路。该项目作为一个多学科的家,培训研究生和本科生在两个参与机构。本科生的研究机会,为代表性不足的群体是一个特殊的重点,即学生在新墨西哥州确定被招募到夏季研究机会在宾夕法尼亚大学。技术说明:在这个项目中,研究小组调查了一个新的战略横向定义纳米组成模式外延生长的III-V族半导体系统。这种多步策略被称为外延后薄膜原子位移工程(ADEPT),它与传统的异质外延方法相结合,可以为创建具有高度可控性的三维量子势垒配置提供一种实用的途径。ADEPT方法采用空间图案化的应力场和热退火来驱动化合物半导体合金膜中的扩散,所述化合物半导体合金膜由具有不同尺寸和对弹性应力的扩散响应的两种移动的原子种类组成。通过将可重复使用的、预图案化的纳米柱阵列压靠在半导体衬底上来施加应力场。值得注意的是,“压制和印刷”ADEPT策略不依赖于难以控制的子相的成核和生长,并且适用于其中存在两种不同尺寸的移动的原子种类的任何材料系统。该团队最近在SiGe中展示了ADEPT方法,并在此研究了其在III-V族异质外延系统(即InGaAs和GaAsSb,均支持InP)中的更广泛应用。与SiGe相反,这些材料中的原子扩散率没有完全表征,特别是作为温度和弹性应力的函数,这妨碍了预测建模和充分探索ADEPT过程的能力。研究活动旨在克服由大的工艺参数空间和有限的实验吞吐量与两步,计算机辅助实验设计方法所构成的障碍。在第一阶段,数据辅助模型开发使用一系列相对“简单”的实验,专门设计用于生成信息的参数化模型中的III-V族材料的相互扩散。在第二阶段,参数化模型被用来探索多维参数空间,并确定合适的条件进行实验演示的ADEPT process.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring electromechanical utility of GaAs interdigitated transducers; using finite-element-method-based parametric analysis and experimental comparison
  • DOI:
    10.1116/6.0002169
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Rummel;L. Miroshnik;Andrew B. Li;Grant D. Heilman;G. Balakrishnan;T. Sinno;S. Han
  • 通讯作者:
    B. Rummel;L. Miroshnik;Andrew B. Li;Grant D. Heilman;G. Balakrishnan;T. Sinno;S. Han
High-Temperature Piezoelectric Characterization of Gallium Arsenide and Surface Acoustic Wave Analysis via Interdigitated Transducer Modeling
通过叉指换能器建模进行砷化镓的高温压电特性和表面声波分析
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Rummel, Brian D;Miroshnik, Leonid;Hellman, Grant D;Garcia, Isaac;Menk, Lyle Alexander;Balakrishnan, Ganesh;Sinno, Talid;Han, Sang M.
  • 通讯作者:
    Han, Sang M.
Imaging of surface acoustic waves on GaAs using 2D confocal Raman microscopy and atomic force microscopy
  • DOI:
    10.1063/5.0034572
  • 发表时间:
    2021-01-18
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Rummel, Brian Douglas;Miroshnik, Leonid;Han, Sang M.
  • 通讯作者:
    Han, Sang M.
Maintaining atomically smooth GaAs surfaces after high-temperature processing for precise interdiffusion analysis and materials engineering
在高温处理后保持原子级光滑的 GaAs 表面,以进行精确的相互扩散分析和材料工程
  • DOI:
    10.1116/6.0001399
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Miroshnik, Leonid;Rummel, Brian D.;Li, Andrew B.;Balakrishnan, Ganesh;Sinno, Talid;Han, Sang M.
  • 通讯作者:
    Han, Sang M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Talid Sinno其他文献

Configurational entropy significantly influences point defect thermodynamics and diffusion in crystalline silicon
构型熵显着影响晶体硅中的点缺陷热力学和扩散
  • DOI:
    10.1103/physrevmaterials.6.064603
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jinping Luo;Chenyang Zhou;Yunjie Cheng;Qihang Li;Lijun Liu;Jack F. Douglas;Talid Sinno
  • 通讯作者:
    Talid Sinno

Talid Sinno的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Talid Sinno', 18)}}的其他基金

CDS&E: Collaborative Research: Data-Driven Predictive Modeling of Flows Containing Aggregating Particles
CDS
  • 批准号:
    1404826
  • 财政年份:
    2014
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-Scale Patterning of Germanium Quantum Dots by Stress Transfer
合作研究:通过应力传递实现锗量子点的大规模图案化
  • 批准号:
    1068841
  • 财政年份:
    2011
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Low-Cost Substrates for III-V Photovoltaics by Self-Templated Selective Epitaxial Growth of Germanium on Silicon
合作提案:通过硅上锗的自模板选择性外延生长实现低成本 III-V 光伏衬底
  • 批准号:
    0907365
  • 财政年份:
    2009
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Rational Self-Assembly of Ordered Nanoparticle Composites using DNA Interactions
利用 DNA 相互作用合理自组装有序纳米粒子复合材料
  • 批准号:
    0829045
  • 财政年份:
    2008
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Multiscale Modeling, Optimization, and Control of Microstructural Evolution
微观结构演化的多尺度建模、优化和控制
  • 批准号:
    0730971
  • 财政年份:
    2007
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
NIRT: Directed Assembly of Nanostructures: Theory, Simulations, and Experiments in Hard and Soft Materials
NIRT:纳米结构的定向组装:硬材料和软材料的理论、模拟和实验
  • 批准号:
    0404259
  • 财政年份:
    2004
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
CAREER: Systematic Multiscale Modeling of Directed Assembly in Semiconductor Materials Processing
职业:半导体材料加工中定向组装的系统多尺度建模
  • 批准号:
    0134418
  • 财政年份:
    2002
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304852
  • 财政年份:
    2023
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304854
  • 财政年份:
    2023
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304853
  • 财政年份:
    2023
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225896
  • 财政年份:
    2023
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
  • 批准号:
    2204075
  • 财政年份:
    2022
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
  • 批准号:
    2204074
  • 财政年份:
    2022
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
  • 批准号:
    2208865
  • 财政年份:
    2022
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
  • 批准号:
    2208848
  • 财政年份:
    2022
  • 资助金额:
    $ 26.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了