CDS&E: Collaborative Research: Data-Driven Predictive Modeling of Flows Containing Aggregating Particles
CDS
基本信息
- 批准号:1404826
- 负责人:
- 金额:$ 57.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-1404826/1404832Sinno/KevrikidisFluid flows containing complex particles that interact with each other and with vessel walls are a central feature of an enormous range of biological, chemical, and physical processes, and the potential scientific and technological impact of having access to predictive computer models is difficult to overstate. Consequently, improvements in computer simulations for aggregating particulate flows have been actively sought for many years, and to date have been driven largely by increased availability of computer power coupled with advances in mathematical algorithms and techniques. As this trend continues, computational modeling is increasingly blessed (and cursed) by the "big data" streams generated by high resolution experimental measurements and/or by detailed computational simulations. In particular, the meaningful comparison of computational outputs and experimental measurements, both of which are large, complex, and statistically noisy, has emerged as a key challenge. As a result, models often capture many qualitative phenomena correctly but their predictive ability, and hence their usefulness to industry and manufacturing, becomes increasingly hard to establish and exploit. The proposed work seeks to close this gap by implementing, extending and exploiting a broad (and evolving) set of novel data mining techniques that enable new ways of linking tailored experiments to smartly designed simulations and back to model building. A multifaceted approach will be pursued to interrogate and use data jointly from a multiscale/multi-element model and two particulate-flow experimental systems. The experimental systems include a "target" system (platelets in blood), whose predictive description is ultimately sought, and a "model" system (DNA-functionalized colloids in water), which will be used to develop methods and help interpret the more complicated target. Both systems are defined by "complex" particles that exhibit time-dependent adhesivity leading to transiently evolving aggregates at a specified location on the vessel surface. Modern data mining techniques will be exploited and extended to process the native, high-dimensional data generated by these three sources to discover low-dimensional statistical measures that enable meaningful merging/comparisons of data streams from different sources and runs. Ultimately, the project deliverables are (i) a better understanding of the physical, chemical and biological mechanisms operating in these complex systems, (ii) data-enhanced and data-validated engineering models, and (iii) experimental design rules for complex, multi-parameter systems.
CBET-1404826/1404832 Sinno/Kevin rikidisFluid Flow包含相互作用和与管壁相互作用的复杂颗粒,是一系列生物、化学和物理过程的中心特征,获得预测计算机模型的潜在科学和技术影响怎么强调都不为过。因此,多年来一直在积极寻求改善聚集颗粒流的计算机模拟,到目前为止,主要是由于计算机能力的增加以及数学算法和技术的进步。随着这一趋势的继续,计算建模越来越受到由高分辨率实验测量和/或详细计算模拟产生的“大数据”流的祝福(和诅咒)。特别是,对计算输出和实验测量进行有意义的比较,这两者都很大、很复杂,而且在统计上有噪音,已经成为一个关键的挑战。因此,模型往往正确地捕捉到许多定性现象,但它们的预测能力,以及它们对工业和制造业的实用性,变得越来越难以建立和利用。这项拟议的工作试图通过实施、扩展和利用一套广泛的(和不断发展的)新的数据挖掘技术来缩小这一差距,这些技术能够以新的方式将量身定制的实验与设计巧妙的模拟联系起来,并返回到模型建立。将采取多方面的办法,联合询问和使用来自多尺度/多元素模型和两个颗粒流实验系统的数据。这些实验系统包括一个“靶标”系统(血液中的血小板)和一个“模型”系统(水中的DNA功能化胶体),前者最终寻求预测性描述,后者将用于开发方法并帮助解释更复杂的靶标。这两个系统都是由“复杂”颗粒定义的,这些颗粒表现出随时间变化的粘附性,导致在血管表面的特定位置瞬时演化聚集体。现代数据挖掘技术将被利用和扩展,以处理由这三个来源产生的本地高维数据,以发现能够对来自不同来源和运行的数据流进行有意义的合并/比较的低维统计度量。归根结底,项目成果是(I)更好地了解这些复杂系统中运行的物理、化学和生物机制,(Ii)数据增强和数据验证的工程模型,以及(Iii)复杂、多参数系统的实验设计规则。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Talid Sinno其他文献
Configurational entropy significantly influences point defect thermodynamics and diffusion in crystalline silicon
构型熵显着影响晶体硅中的点缺陷热力学和扩散
- DOI:
10.1103/physrevmaterials.6.064603 - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Jinping Luo;Chenyang Zhou;Yunjie Cheng;Qihang Li;Lijun Liu;Jack F. Douglas;Talid Sinno - 通讯作者:
Talid Sinno
Talid Sinno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Talid Sinno', 18)}}的其他基金
Collaborative Research: Atomic Displacement Engineering of Post-epitaxial Thin-films (ADEPT)
合作研究:外延后薄膜原子位移工程(ADEPT)
- 批准号:
1808065 - 财政年份:2018
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: Large-Scale Patterning of Germanium Quantum Dots by Stress Transfer
合作研究:通过应力传递实现锗量子点的大规模图案化
- 批准号:
1068841 - 财政年份:2011
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Proposal: Low-Cost Substrates for III-V Photovoltaics by Self-Templated Selective Epitaxial Growth of Germanium on Silicon
合作提案:通过硅上锗的自模板选择性外延生长实现低成本 III-V 光伏衬底
- 批准号:
0907365 - 财政年份:2009
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Rational Self-Assembly of Ordered Nanoparticle Composites using DNA Interactions
利用 DNA 相互作用合理自组装有序纳米粒子复合材料
- 批准号:
0829045 - 财政年份:2008
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Multiscale Modeling, Optimization, and Control of Microstructural Evolution
微观结构演化的多尺度建模、优化和控制
- 批准号:
0730971 - 财政年份:2007
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
NIRT: Directed Assembly of Nanostructures: Theory, Simulations, and Experiments in Hard and Soft Materials
NIRT:纳米结构的定向组装:硬材料和软材料的理论、模拟和实验
- 批准号:
0404259 - 财政年份:2004
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
CAREER: Systematic Multiscale Modeling of Directed Assembly in Semiconductor Materials Processing
职业:半导体材料加工中定向组装的系统多尺度建模
- 批准号:
0134418 - 财政年份:2002
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338394 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 57.5万 - 项目类别:
Standard Grant