Fast Simulation of Wave Scattering and Propagation in Inhomogeneous Media with Complex Geometries
复杂几何非均匀介质中波散射和传播的快速模拟
基本信息
- 批准号:0731503
- 负责人:
- 金额:$ 5.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-13 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the proposed project is to develop innovative numerical approaches to produce fourth order accurate simulation of electromagnetic waves in inhomogeneous media with complex geometries, by using only simple Cartesian grids. The rapid growth of computer capability in the past few decades not withstanding, our ability to model three-dimensional wave propagation and scattering involving geometrically complicated dielectric interfaces is severely limited. Mathematically, the wave solutions are usually non-smooth or even discontinuous across the material interfaces, so that our effort in designing efficient algorithms is easily foiled, unless the complex interfaces are properly treated. The complex interfaces and geometries are commonly tackled by using body-fitted grids in the literature. Even though considerable progress has been made in grid generation, the formation of a good quality body-fitted grid system in geometrically complex domain remains a difficult and time-consuming task. Alternatively, in this project, the investigator will explore how to accommodate dielectric interfaces with complex geometries by using Cartesian grids including the staggered Yee grids. The resulting Cartesian grid methods, which in some sense fit the numerical differentiation operators to the complicated geometries, are less well studied in the literature, in contrast to the body-fitted grid methods. The development of high order Cartesian grid methods with complex interfaces being accurately treated, is of imminent practical importance to efficient wave simulations, but remains unsolved. In this project, innovative fourth order Cartesian grid approaches will be constructed based on the matched interface and boundary (MIB) method newly developed by the investigator and his collaborators for solving partial differential equations (PDEs) involving material interfaces or inhomogeneous media. To address a widespread variety of electromagnetic applications, a complete set of fourth order MIB methods will be developed for different electromagnetic formulations including the Helmholtz equation, the wave equation, and Maxwell's equations, and for different scenarios including the transverse magnetic mode, the transverse electric mode, and fully three-dimensional mode. Computational electromagnetics (CEM), an interdisciplinary field where one witnesses mutual contributions from mathematicians and engineers is of paramount importance for a wide range of applications, including analysis and synthesis of antenna, calculation of radar cross section (RCS), simulation of ground or surface penetrating radar, to name only a few. The proposed numerical approaches aim to address challenging CEM applications involving large-scale and irregularly shaped structures, for which currently existing methods encounter great difficulties. By delivering more accurate and efficient wave simulations, the proposed methods will lead to breakthroughs in resolving long-standing problems in the real CEM applications. Moreover, the proposed methods will have considerable impact on other challenging interface problems in scientific computing, such as the immersed interface and moving interface problems in fluid dynamics, electrostatic interface problems for structural prediction of large biomolecules in computational biology.
该项目的目标是开发创新的数值方法,通过使用简单的笛卡尔网格,在具有复杂几何形状的非均匀介质中产生四阶精确的电磁波模拟。尽管在过去的几十年里计算机的能力迅速增长,但我们模拟三维波传播和散射的能力受到几何复杂介质界面的严重限制。在数学上,波解在材料界面上通常是非光滑的,甚至是不连续的,所以我们设计有效算法的努力很容易被挫败,除非对复杂的界面进行适当的处理。在文献中,复杂的界面和几何形状通常通过使用贴体网格来解决。尽管在网格生成方面已经取得了很大的进展,但在几何复杂的区域中形成一个高质量的体拟合网格系统仍然是一项困难而耗时的任务。另外,在这个项目中,研究者将探索如何通过使用笛卡尔网格(包括交错Yee网格)来适应具有复杂几何形状的介电界面。由此产生的笛卡尔网格方法在某种意义上适合于复杂几何的数值微分算子,与体拟合网格方法相比,在文献中研究得较少。精确处理复杂界面的高阶笛卡尔网格方法的发展,对有效的波浪模拟具有迫切的实际意义,但目前仍未得到解决。在这个项目中,创新的四阶笛卡尔网格方法将基于研究者和他的合作者新开发的匹配界面和边界(MIB)方法来构建,用于解决涉及材料界面或非均匀介质的偏微分方程(PDEs)。为了解决各种广泛的电磁应用,将开发一套完整的四阶MIB方法,用于不同的电磁公式,包括亥姆霍兹方程、波动方程和麦克斯韦方程,以及不同的场景,包括横向磁模式、横向电模式和全三维模式。计算电磁学(CEM)是一个跨学科的领域,一个见证数学家和工程师相互贡献的领域,对于广泛的应用至关重要,包括天线的分析和合成,雷达截面(RCS)的计算,地面或地面穿透雷达的模拟,仅举几例。提出的数值方法旨在解决涉及大型和不规则形状结构的具有挑战性的CEM应用,目前的方法遇到了很大的困难。通过提供更精确和高效的波浪模拟,所提出的方法将在解决实际CEM应用中长期存在的问题方面取得突破。此外,所提出的方法将对科学计算中其他具有挑战性的界面问题产生相当大的影响,例如流体动力学中的浸入界面和移动界面问题,计算生物学中大分子结构预测的静电界面问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shan Zhao其他文献
Development of GPR data analysis algorithms for predicting thin asphalt concrete overlay thickness and density
- DOI:
- 发表时间:
2018-11 - 期刊:
- 影响因子:0
- 作者:
Shan Zhao - 通讯作者:
Shan Zhao
Atorvastatin attenuates myocardial apoptosis and cardiac remodeling , and improves cardiac function after acute myocardial infarction in diabetic rats by further enhancing the activation of hepatocyte growth factor / c-Met pathway
阿托伐他汀通过进一步增强肝细胞生长因子/c-Met通路的激活,减轻糖尿病大鼠急性心肌梗塞后的心肌细胞凋亡和心脏重塑,改善心功能。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Zaiyong Zhang;Guang Yan;Wenzhu Zhang;Jianhao Li;Guo;Han;Weijie;Liang;Shan Zhao;Yulan Zhang - 通讯作者:
Yulan Zhang
Dual cocatalysts decorated three dimensionally ordered mesoporous g‐C 3 N 4 with homogeneous wall thickness for enhanced photocatalytic performance
双助催化剂装饰三维有序介孔 g–C 3 N 4 且具有均匀的壁厚,可增强光催化性能
- DOI:
10.1002/aoc.5552 - 发表时间:
2020-01 - 期刊:
- 影响因子:3.9
- 作者:
Jingce Bi;Shan Zhao;Junbiao Wu;Yan Xu;Zhuopeng Wang;Yide Han;Xia Zhang - 通讯作者:
Xia Zhang
Degradation and residues of indoxacarb enantiomers in rice plants, rice hulls and brown rice using enriched S-indoxacarb formulation and enantiopure formulation
使用富集 S-茚虫威制剂和对映体纯制剂对水稻、稻壳和糙米中茚虫威对映体的降解和残留
- DOI:
10.1002/bmc.4301 - 发表时间:
2018 - 期刊:
- 影响因子:1.8
- 作者:
Lihong Shi;Ting Gui;Shan Zhao;Jin Xu;Fei Wang;Changling Sui;Yuping Zhang;Deyu Hu - 通讯作者:
Deyu Hu
Survey of Nutrient Molecules
营养分子调查
- DOI:
10.1210/mn1.9781936704842.ch10 - 发表时间:
2015 - 期刊:
- 影响因子:4.4
- 作者:
J. Mechanick;Shan Zhao;Jing J. Gong - 通讯作者:
Jing J. Gong
Shan Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shan Zhao', 18)}}的其他基金
Collaborative Research: Implicit Solvent Modeling and Fast Algorithm Development for Simulating Solutes with Atomic Polarizable Multipoles
合作研究:使用原子极化多极子模拟溶质的隐式溶剂建模和快速算法开发
- 批准号:
2110914 - 财政年份:2021
- 资助金额:
$ 5.83万 - 项目类别:
Standard Grant
Collaborative Research: A Regularized Poisson Boltzmann Model for Fast Computation of the Ensemble Average Polar Solvation Energy
合作研究:用于快速计算系综平均极性溶剂化能的正则化泊松玻尔兹曼模型
- 批准号:
1812930 - 财政年份:2018
- 资助金额:
$ 5.83万 - 项目类别:
Standard Grant
CBMS Conference: Mathematical Molecular Bioscience and Biophysics
CBMS 会议:数学分子生物科学与生物物理学
- 批准号:
1836318 - 财政年份:2018
- 资助金额:
$ 5.83万 - 项目类别:
Standard Grant
Matched alternating direction implicit (ADI) schemes for solving the nonlinear Poisson-Boltzmann equation with complex dielectric interfaces
用于求解具有复杂介电界面的非线性泊松-玻尔兹曼方程的匹配交替方向隐式 (ADI) 方案
- 批准号:
1318898 - 财政年份:2013
- 资助金额:
$ 5.83万 - 项目类别:
Standard Grant
Modeling, Algorithms and Computation of Electromagnetic Wave Interacting with Dispersive Interface
电磁波与色散界面相互作用的建模、算法和计算
- 批准号:
1016579 - 财政年份:2010
- 资助金额:
$ 5.83万 - 项目类别:
Standard Grant
Fast Simulation of Wave Scattering and Propagation in Inhomogeneous Media with Complex Geometries
复杂几何非均匀介质中波散射和传播的快速模拟
- 批准号:
0609844 - 财政年份:2006
- 资助金额:
$ 5.83万 - 项目类别:
Standard Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Construction of practical boundary modeling for wave acoustic simulation in a room
室内波浪声学模拟实用边界模型的构建
- 批准号:
23K04144 - 财政年份:2023
- 资助金额:
$ 5.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An observational and numerical simulation study of plasma instability related with substorm injections and ULF wave excitation
与亚暴注入和 ULF 波激发相关的等离子体不稳定性的观测和数值模拟研究
- 批准号:
22KJ0532 - 财政年份:2023
- 资助金额:
$ 5.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
PIC simulation of lower hybrid wave under inhomogeneous magnetic field: energetic-ion injection model
非均匀磁场下混合波的PIC模拟:高能离子注入模型
- 批准号:
22KJ1887 - 财政年份:2023
- 资助金额:
$ 5.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Efficacy of limb immersion for mitigating physiological strain from the cell to whole-body response during a daylong heat exposure in elderly adults: a laboratory-based heat wave simulation
老年人一整天的热暴露期间肢体浸泡对减轻从细胞到全身反应的生理应变的功效:基于实验室的热浪模拟
- 批准号:
473796 - 财政年份:2022
- 资助金额:
$ 5.83万 - 项目类别:
Fellowship Programs
The development of nonlinear ship-tank coupling simulation system under high wave condition considering the nonlinear tank load
考虑非线性罐体载荷的高波工况非线性船罐耦合仿真系统开发
- 批准号:
22K14435 - 财政年份:2022
- 资助金额:
$ 5.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
k-Wave: An open-source toolbox for the time-domain simulation of acoustic wave fields
k-Wave:用于声波场时域模拟的开源工具箱
- 批准号:
EP/W029324/1 - 财政年份:2022
- 资助金额:
$ 5.83万 - 项目类别:
Research Grant
Instrumentation and Simulation for Advanced LIGO Upgrades and Future Gravitational Wave Detectors
先进 LIGO 升级和未来引力波探测器的仪器和仿真
- 批准号:
2110360 - 财政年份:2021
- 资助金额:
$ 5.83万 - 项目类别:
Standard Grant
Study on scale effect of impulsive breaking wave force for numerical simulation
冲击破波力尺度效应数值模拟研究
- 批准号:
21K14256 - 财政年份:2021
- 资助金额:
$ 5.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel Methods for Numerical Simulation of Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值模拟的新方法
- 批准号:
2110407 - 财政年份:2021
- 资助金额:
$ 5.83万 - 项目类别:
Standard Grant
Development of a Fast Numerical Simulation Method for Macroscopic Wave Functions in Superconductors and Superfluids
超导体和超流体宏观波函数快速数值模拟方法的开发
- 批准号:
20K04586 - 财政年份:2020
- 资助金额:
$ 5.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)