Modeling, Algorithms and Computation of Electromagnetic Wave Interacting with Dispersive Interface
电磁波与色散界面相互作用的建模、算法和计算
基本信息
- 批准号:1016579
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the proposed project is to develop novel mathematical and simulation tools for studying electromagnetic wave interacting with arbitrarily curved dispersive interface. Great challenges exist in developing efficient and reliable numerical methods for such interactions. Physically, jumps in wave solution and its derivatives across the dispersive interface are time dependent. Numerically, the existing algorithms suffer a serious accuracy reduction due to their incapability to handle such time variant jumps. Computationally, this interface error will be significantly amplified when coupling with the staircasing approximation in treating curved interface. Due to these challenges, an extremely expensive mesh resolution of about 100 grid points per wavelength was commonly practiced in the metamaterial simulations. In this project, the investigator will rigorously analyze the time dependence and cross coupling of electromagnetic field components at the dispersive interface. Novel formulations will be derived for commonly used dispersive material and metamaterial models to convert time dependent jump conditions into time independent ones and to minimize the cross coupling. Building on these mathematical modeling, a second order accurate interface algorithm will be developed to deal with arbitrarily curved dispersive interface, by using only a simple Cartesian grid. This higher order of accuracy will promise a higher numerical resolution, so that the computational burden of the existing simulations can be significantly relieved. Dispersive media are ubiquitous in nature, such as in biological tissues, rocks, soils, and plasma. The numerical simulation of dispersive media is crucial to a wide range of electromagnetic and optical applications, such as microwave imaging for early detection of breast cancer, double negative metamaterial based subwavelength imaging system, and cloaking devices. The proposed mathematical modeling, algorithm development, and numerical computations will address key scientific challenges in an interdisciplinary filed lying at the interface of computational mathematics, physics, and electric engineering. The planned research activities will bring new advances to computational mathematics and lead to reliable simulation tools for the characterization, analysis, and design of various practical engineering devices and systems. These tools in turn may offer a better means for analyzing or calibrating some basic physical laws, such as the one governing the resolution limit of the sub-diffraction imaging system. In addition, this project will provide an interdisciplinary research training environment which could inspire and promote more students to purse careers in science and engineering.
该项目的目标是开发新的数学和仿真工具,用于研究电磁波与任意弯曲色散界面的相互作用。为这种相互作用开发有效和可靠的数值方法存在巨大的挑战。在物理上,波解的跳跃及其在色散界面上的导数是与时间相关的。数值上,现有的算法遭受严重的准确性降低,由于他们无法处理这种时变跳跃。在计算上,这种界面误差在处理弯曲界面时与阶梯近似耦合时会被显著放大。由于这些挑战,在超材料模拟中通常采用每波长约100个网格点的极其昂贵的网格分辨率。在这个项目中,研究人员将严格分析色散界面处电磁场分量的时间依赖性和交叉耦合。新的配方将推导出常用的色散材料和超材料模型转换成时间无关的跳跃条件,并尽量减少交叉耦合。在此基础上,本文提出了一种二阶精度的界面算法,该算法只需使用简单的直角坐标网格,即可处理任意曲面的色散界面。这种更高的精度将保证更高的数值分辨率,从而可以显着减轻现有模拟的计算负担。分散介质在自然界中普遍存在,例如在生物组织、岩石、土壤和等离子体中。色散介质的数值模拟对于广泛的电磁和光学应用是至关重要的,例如用于早期检测乳腺癌的微波成像,基于双负超材料的亚波长成像系统,以及隐身设备。所提出的数学建模,算法开发和数值计算将解决跨学科领域的关键科学挑战,该领域位于计算数学,物理学和电气工程的接口。计划中的研究活动将为计算数学带来新的进展,并为各种实际工程设备和系统的表征,分析和设计提供可靠的模拟工具。这些工具反过来可以提供更好的手段来分析或校准一些基本的物理定律,例如控制亚衍射成像系统的分辨率极限的定律。此外,该项目将提供一个跨学科的研究培训环境,可以激励和促进更多的学生追求科学和工程事业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shan Zhao其他文献
Development of GPR data analysis algorithms for predicting thin asphalt concrete overlay thickness and density
- DOI:
- 发表时间:
2018-11 - 期刊:
- 影响因子:0
- 作者:
Shan Zhao - 通讯作者:
Shan Zhao
Atorvastatin attenuates myocardial apoptosis and cardiac remodeling , and improves cardiac function after acute myocardial infarction in diabetic rats by further enhancing the activation of hepatocyte growth factor / c-Met pathway
阿托伐他汀通过进一步增强肝细胞生长因子/c-Met通路的激活,减轻糖尿病大鼠急性心肌梗塞后的心肌细胞凋亡和心脏重塑,改善心功能。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Zaiyong Zhang;Guang Yan;Wenzhu Zhang;Jianhao Li;Guo;Han;Weijie;Liang;Shan Zhao;Yulan Zhang - 通讯作者:
Yulan Zhang
Dual cocatalysts decorated three dimensionally ordered mesoporous g‐C 3 N 4 with homogeneous wall thickness for enhanced photocatalytic performance
双助催化剂装饰三维有序介孔 g–C 3 N 4 且具有均匀的壁厚,可增强光催化性能
- DOI:
10.1002/aoc.5552 - 发表时间:
2020-01 - 期刊:
- 影响因子:3.9
- 作者:
Jingce Bi;Shan Zhao;Junbiao Wu;Yan Xu;Zhuopeng Wang;Yide Han;Xia Zhang - 通讯作者:
Xia Zhang
Degradation and residues of indoxacarb enantiomers in rice plants, rice hulls and brown rice using enriched S-indoxacarb formulation and enantiopure formulation
使用富集 S-茚虫威制剂和对映体纯制剂对水稻、稻壳和糙米中茚虫威对映体的降解和残留
- DOI:
10.1002/bmc.4301 - 发表时间:
2018 - 期刊:
- 影响因子:1.8
- 作者:
Lihong Shi;Ting Gui;Shan Zhao;Jin Xu;Fei Wang;Changling Sui;Yuping Zhang;Deyu Hu - 通讯作者:
Deyu Hu
Survey of Nutrient Molecules
营养分子调查
- DOI:
10.1210/mn1.9781936704842.ch10 - 发表时间:
2015 - 期刊:
- 影响因子:4.4
- 作者:
J. Mechanick;Shan Zhao;Jing J. Gong - 通讯作者:
Jing J. Gong
Shan Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shan Zhao', 18)}}的其他基金
Collaborative Research: Implicit Solvent Modeling and Fast Algorithm Development for Simulating Solutes with Atomic Polarizable Multipoles
合作研究:使用原子极化多极子模拟溶质的隐式溶剂建模和快速算法开发
- 批准号:
2110914 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: A Regularized Poisson Boltzmann Model for Fast Computation of the Ensemble Average Polar Solvation Energy
合作研究:用于快速计算系综平均极性溶剂化能的正则化泊松玻尔兹曼模型
- 批准号:
1812930 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CBMS Conference: Mathematical Molecular Bioscience and Biophysics
CBMS 会议:数学分子生物科学与生物物理学
- 批准号:
1836318 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Matched alternating direction implicit (ADI) schemes for solving the nonlinear Poisson-Boltzmann equation with complex dielectric interfaces
用于求解具有复杂介电界面的非线性泊松-玻尔兹曼方程的匹配交替方向隐式 (ADI) 方案
- 批准号:
1318898 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Fast Simulation of Wave Scattering and Propagation in Inhomogeneous Media with Complex Geometries
复杂几何非均匀介质中波散射和传播的快速模拟
- 批准号:
0731503 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Fast Simulation of Wave Scattering and Propagation in Inhomogeneous Media with Complex Geometries
复杂几何非均匀介质中波散射和传播的快速模拟
- 批准号:
0609844 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
- 批准号:
2239046 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Towards Explainable AI Algorithms via Fitness Landscape Analysis in Evolutionary Computation
通过进化计算中的适应度景观分析实现可解释的人工智能算法
- 批准号:
2890959 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Studentship
CAREER: The Exocompiler: Decoupling Algorithms from the Organization of Computation and Data
职业:Exocompiler:将算法与计算和数据的组织解耦
- 批准号:
2328543 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
- 批准号:
RGPIN-2020-06746 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
- 批准号:
DGECR-2022-00405 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Launch Supplement
Quantum dynamics, entanglement, and computation: theory and simulation algorithms
量子动力学、纠缠和计算:理论和模拟算法
- 批准号:
RGPIN-2020-05607 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
- 批准号:
RGPIN-2022-04609 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Behavioural Computation: Analysis, Models, and Algorithms for Supporting Human Improvement on the Web
行为计算:支持网络人类改进的分析、模型和算法
- 批准号:
RGPIN-2018-06195 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual