Structure-preserving time integrators for thermodynamics of nonlinear continua.
用于非线性连续体热力学的结构保持时间积分器。
基本信息
- 批准号:184296245
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The steady increase of the performance of computers allows nowadays a computational analysis of thermodynamic processes with a full consideration of mutual interactions of coupled physical fields. Hence, these systems can be optimized much faster and cheaper. In numerical simulations of thermodynamic systems, it is therefore important to apply time integrators, which numerically exactly reproduce mutual interactions and, moreover, make the simulation more robust. This is guaranteed if a time discretisation algorithmically reproduce the physical structure, which means structural characteristics as balance laws and constitutive properties are fullfilled exactly in a discrete setting independent of the time discretisation. In comparison to standard time integrators, structure preserving time integrators therefore are able to simulate processes also with a coarse time discretisation.The aim of the submitted research project is to make the designed structure preserving time integrators more user-friendly. The new algorithms should perform an individual adaption of the time discretisation in each coupled field subject to the structure preservation, and at the same time a structure preserving adaption of the spatial finite element mesh. The adaption of the time discretisation is obtained by determining the distribution of interpolation points of temporal shape functions in a given time step.But this p-adaption will not be controlled by numerical errors as usual, but controlled by structure preservation. The finite element adaption in space is based on a calculation of the nodal positions with the balance equation of material forces of the continuum (r-adaption).
随着计算机性能的不断提高,现在可以在充分考虑耦合物理场相互作用的情况下对热力学过程进行计算分析。因此,这些系统可以更快、更便宜地进行优化。因此,在热力学系统的数值模拟中,重要的是应用时间积分器,其在数值上精确地再现相互作用,并且使模拟更鲁棒。如果时间离散化算法再现物理结构,这意味着作为平衡定律和本构性质的结构特征在独立于时间离散化的离散设置中完全满足,则可以保证这一点。与标准时间积分器相比,结构保持时间积分器因此能够模拟过程,也具有粗略的时间discretionation.The提交的研究项目的目的是使设计的结构保持时间积分器更加用户友好。新的算法应执行一个单独的适应的时间离散化在每个耦合领域的结构保护,并在同一时间的空间有限元网格的结构保护适应。时间离散的自适应是通过确定时间形状函数在给定时间步长内的插值点的分布来实现的,但这种p-自适应不受通常的数值误差控制,而是受结构保持控制。空间中的有限元自适应是基于用连续体的材料力的平衡方程(r-自适应)计算节点位置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Michael Groß其他文献
Professor Dr.-Ing. Michael Groß的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Michael Groß', 18)}}的其他基金
Variational-based finite element simulation of fiber-reinforced materials with fiber bending stiffness inmoving thermodynamical systems.
移动热力学系统中具有纤维弯曲刚度的纤维增强材料的基于变分的有限元模拟。
- 批准号:
427519416 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Physically consistent simulation of thermodynamics of fiber-reinforced plastics
纤维增强塑料热力学的物理一致模拟
- 批准号:
317335337 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Stabile Zeitintegratoren für die nichtlineare Thermoviskoelastodynamik
用于非线性热粘弹动力学的稳定时间积分器
- 批准号:
34732583 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
A structure-preserving immersed finite element method for the dynamics of multiphase continua with thermomechanical coupling
热力耦合多相连续体动力学的保结构浸入式有限元方法
- 批准号:
498565485 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Variational modelling and simulation of thermo-optochemo-dynamical coupling in liquid crystalline elastomers
液晶弹性体热光化学动力学耦合的变分建模与模拟
- 批准号:
463546105 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
面向MANET的密钥管理关键技术研究
- 批准号:61173188
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309728 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309727 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
High Order Schemes: Bound Preserving, Moving Boundary, Stochastic Effects and Efficient Time Discretization
高阶方案:保界、移动边界、随机效应和高效时间离散化
- 批准号:
2309249 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Preserving Geriatric Muscle with an Osteoporosis Medication
用骨质疏松症药物保护老年肌肉
- 批准号:
10633791 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identifying pediatric asthma subtypes using novel privacy-preserving federated machine learning methods
使用新颖的隐私保护联合机器学习方法识别小儿哮喘亚型
- 批准号:
10713424 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Anti-Mullerian hormone for preserving ovarian function before administration of gonadotoxic therapies or after transplantation of cryopreserved tissue.
抗苗勒氏管激素,用于在性腺毒性治疗前或冷冻组织移植后保留卵巢功能。
- 批准号:
10719540 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Preserving Genome Integrity In AAV-Mediated Gene Therapy
在 AAV 介导的基因治疗中保持基因组完整性
- 批准号:
10338480 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Preserving Genome Integrity In AAV-Mediated Gene Therapy
在 AAV 介导的基因治疗中保持基因组完整性
- 批准号:
10558679 - 财政年份:2022
- 资助金额:
-- - 项目类别: