A structure-preserving immersed finite element method for the dynamics of multiphase continua with thermomechanical coupling

热力耦合多相连续体动力学的保结构浸入式有限元方法

基本信息

项目摘要

Concerning finite element simulations of moving continua, there are many examples in which a considered continuum consists of different embedded phases. Here, the phases can be flexible solids, fluids as well as rigid bodies. They include a rotor in a Newtonian fluid and a fiber-reinforced material considered as a biphase material. The formulation of the fluid-structure-interaction (FSI) in the first example by means of well-known finite element methods leads to disadvantages in view of computational efficiency and stability if large rotations of embedded phases arise. Well-known reasons are the difficult approximation of convective terms, insufficient meshings of surface contacts as well as frequent remeshings of the phases. The simulation of the solid-solid-interactions in the second example leads to long computing times, because the mesh of the embedded phase determines the number of elements of the surrounding phase. The reason is also the necessary sufficient approximation of surface contacts. These disadvantages can be avoided by an immersed finite element method (IFEM). Aims of this research project is the development and implementation of a new structure-preserving IFEM for dynamic, non-isothermal multiphase continua. Here, fluids as well as solids are taken into account. In order to consider also solids with rigid sections, a noval non-isothermal rigid body formulation is developed, which is directly based on a finite element method. Thereby, micropolar rotational degrees of freedom guarantee the rigidity of the finite element meshes pertaining to the rigid sections. A special variational approach avoids the introduction of an Euler tensor, and rigid sections of flexible solids can be defined by a simple declaration in the total mesh. In this way, thermomechanical couplings between non-isothermal rigid bodies, flexible solids and fluids can be simulated easily. Well-known IFEM assume a fixed Eulerian mesh for the total continuum, and consider Lagrangian meshes only for embedded phases. This restriction will be abolished in the current project, in order to simulate large deformations of non-isothermal multiphase solids by the IFEM. But, also FSI simulations with an Eulerian mesh for a surrounding fluid will be improved by the structure-preserving IFEM. There emerge new space-time approximations, which lead to an increasing numerical stability without user-defined stability parameters.
关于运动连续体的有限元模拟,有许多例子,其中所考虑的连续体由不同的嵌入相组成。这里,相可以是柔性固体、流体以及刚性体。它们包括牛顿流体中的转子和被认为是双相材料的纤维增强材料。在第一个例子中,通过众所周知的有限元方法的流体-结构-相互作用(FSI)的配方导致的缺点,在考虑到计算效率和稳定性,如果嵌入相的大旋转出现。众所周知的原因是对流项的难以近似,表面接触的网格划分不足以及相的频繁重新网格划分。在第二个例子中的固-固相互作用的模拟导致长的计算时间,因为嵌入相的网格决定了周围相的元素的数量。原因也是表面接触的必要的充分近似。浸入式有限元法(IFEM)可以避免这些缺点。本研究的目的是发展和实现一种新的结构保持IFEM的动态,非等温多相连续。这里,流体以及固体都被考虑在内。为了也考虑具有刚性截面的固体,直接基于有限元法,发展了一种新的非等温刚体列式。因此,微极旋转自由度保证了属于刚性部分的有限元网格的刚性。一种特殊的变分方法避免了欧拉张量的引入,并且柔性固体的刚性截面可以通过在总网格中的简单声明来定义。通过这种方式,可以很容易地模拟非等温刚体、柔性固体和流体之间的热力耦合。著名的IFEM假设一个固定的欧拉网格的总连续,并考虑拉格朗日网格只嵌入相。在目前的项目中,这一限制将被取消,以便通过IFEM模拟非等温多相固体的大变形。但是,也FSI模拟与欧拉网格周围的流体将改善结构保持IFEM。出现了新的时空近似,这导致增加的数值稳定性,而无需用户定义的稳定性参数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Michael Groß其他文献

Professor Dr.-Ing. Michael Groß的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Michael Groß', 18)}}的其他基金

Variational-based finite element simulation of fiber-reinforced materials with fiber bending stiffness inmoving thermodynamical systems.
移动热力学系统中具有纤维弯曲刚度的纤维增强材料的基于变分的有限元模拟。
  • 批准号:
    427519416
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Physically consistent simulation of thermodynamics of fiber-reinforced plastics
纤维增强塑料热力学的物理一致模拟
  • 批准号:
    317335337
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Structure-preserving time integrators for thermodynamics of nonlinear continua.
用于非线性连续体热力学的结构保持时间积分器。
  • 批准号:
    184296245
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stabile Zeitintegratoren für die nichtlineare Thermoviskoelastodynamik
用于非线性热粘弹动力学的稳定时间积分器
  • 批准号:
    34732583
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Variational modelling and simulation of thermo-optochemo-dynamical coupling in liquid crystalline elastomers
液晶弹性体热光化学动力学耦合的变分建模与模拟
  • 批准号:
    463546105
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

面向MANET的密钥管理关键技术研究
  • 批准号:
    61173188
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Z000262/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
  • 批准号:
    ST/Y50998X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了