SGER: Modeling Memory Access Patterns of Geometry Processing Algorithms
SGER:几何处理算法的内存访问模式建模
基本信息
- 批准号:0738401
- 负责人:
- 金额:$ 6.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-10-01 至 2008-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Current graphics and visualization systems have to be built such that they can handle gigantic data sets. Such data sets include large scientific simulations such as nuclear and power simulations, data relevant to national priority and homeland security, and digital models of defense and commercial equipments such as tanks, aircraft, ships, and power plants. Such large data sets cannot fit into the main memory of the machines. Hence, the performance of the visualization systems depends on how efficiently they can process this data segments and still provide a holistic visualization for efficient and correct decision making. This project involves fundamental research in the analysis of methods that process these large geometry data sets for computer graphics and visualization applications. Using this analysis we model the data access pattern of common geometry processing algorithms. Such models can be used to organize data coherently in the secondary storage so that the access time of the data can be reduced. This will improve the performance of the graphics and visualization systems. The coarse data analysis systems derive aggregate information from the data and hence are useful in streaming applications and out-of-core implementations; fine data analysis systems are interested in individual data points and their performance is dictated by data access patterns. In this research, we investigate if there is any natural grouping or partitioning of primitives that describes the data access patterns of most common geometry processing algorithms. We explore the existence of a function that would optimize the grouping of primitives and thus benefit a large class of geometry processing algorithms. This study will enable us to suggest an optimal layout for geometric data that would work best for common geometric algorithms.
当前的图形和可视化系统必须能够处理庞大的数据集。此类数据集包括大型科学模拟,例如核和电力模拟、与国家优先事项和国土安全相关的数据,以及坦克、飞机、船舶和发电厂等国防和商业设备的数字模型。如此庞大的数据集无法装入机器的主存储器。因此,可视化系统的性能取决于它们处理这些数据段的效率,并且仍然为有效和正确的决策提供整体可视化。该项目涉及处理这些大型几何数据集用于计算机图形和可视化应用的方法分析的基础研究。利用这一分析,我们建立了常见的几何处理算法的数据访问模式。这样的模型可以用于在辅助存储器中连贯地组织数据,使得可以减少数据的访问时间。这将提高图形和可视化系统的性能。 粗数据分析系统从数据中获得聚合信息,因此在流应用和核外实现中很有用;细数据分析系统对单个数据点感兴趣,其性能由数据访问模式决定。在这项研究中,我们调查是否有任何自然的分组或分区的图元,描述了最常见的几何处理算法的数据访问模式。我们探讨存在的一个功能,将优化分组的图元,从而有利于一大类的几何处理算法。这项研究将使我们能够提出一个最佳的布局几何数据,将最好的工作,为共同的几何算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gopi Meenakshisundaram其他文献
Gopi Meenakshisundaram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gopi Meenakshisundaram', 18)}}的其他基金
CPA-G&V: Compression Techniques for Direct Rendering
CPA-G
- 批准号:
0811809 - 财政年份:2008
- 资助金额:
$ 6.31万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Postdoctoral Fellowship: SPRF: A Comprehensive Modeling Framework for Semantic Memory Search
博士后奖学金:SPRF:语义记忆搜索综合建模框架
- 批准号:
2313985 - 财政年份:2024
- 资助金额:
$ 6.31万 - 项目类别:
Fellowship Award
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 6.31万 - 项目类别:
Standard Grant
DMS/NIGMS 1: Multi-timescale stochastic modeling to investigate epigenetic memory in bacteria
DMS/NIGMS 1:用于研究细菌表观遗传记忆的多时间尺度随机模型
- 批准号:
2245816 - 财政年份:2023
- 资助金额:
$ 6.31万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2212239 - 财政年份:2022
- 资助金额:
$ 6.31万 - 项目类别:
Standard Grant
Computational modeling of memory sampling during decision making
决策过程中内存采样的计算模型
- 批准号:
572725-2022 - 财政年份:2022
- 资助金额:
$ 6.31万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Recognition-Memory Modeling: Testing Foundations and Extending Boundaries
职业:识别记忆建模:测试基础和扩展边界
- 批准号:
2145308 - 财政年份:2022
- 资助金额:
$ 6.31万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2212240 - 财政年份:2022
- 资助金额:
$ 6.31万 - 项目类别:
Standard Grant
Improving outcomes in endovascular treatment of intracranial aneurysms: Combining additive manufacturing, in-silico modeling, and shape memory polymers
改善颅内动脉瘤血管内治疗的效果:结合增材制造、计算机建模和形状记忆聚合物
- 批准号:
10685325 - 财政年份:2022
- 资助金额:
$ 6.31万 - 项目类别:
Study on magnetic structure analysis and modeling in the nano twin boundary of magnetic shape memory alloy
磁性形状记忆合金纳米孪晶界磁结构分析与建模研究
- 批准号:
21KK0083 - 财政年份:2021
- 资助金额:
$ 6.31万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))