CAREER: Electronic and Mechanical Properties of Single Metal-Molecule-Metal Junctions

职业:单金属-分子-金属结的电子和机械性能

基本信息

  • 批准号:
    0744185
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

In this project funded by the Experimental Physical Chemistry Program of the Chemistry Division, Professor Latha Venkataraman of Columbia University will seek to reveal and understand properties of single molecules attached to metal electrodes while educating students about the interplay of physics, chemistry and engineering at the nanoscale. The size of components in the integrated circuit industry is fast approaching the nanometer scale, requiring a detailed understanding of the fundamental properties at the single molecule level. Specifically, this work proposes to develop and build a high-resolution single-axis conducting atomic force microscope to simultaneously measure the rate at which electrons are transferred across a single molecule junction, as well as the forces required to break the junction apart. Electronic properties, such as junction resistance and current-voltage characteristics, are related to intrinsic junction properties including molecular length, conformation and the alignment of the molecular orbitals with the metal Fermi level. Measurements of forces reveal bond strengths, binding energies and junction stability, properties which cannot be probed directly by electrical measurements. The research proposed here will explore both of these related but different aspects of single-molecule circuits. An integral part of the proposed activity is to introduce nanoscience to high school, undergraduate and graduate students, aiming to recruit them to pursue careers in science. In addition, a new Nanotechnology course for senior undergraduate and graduate students will be developed which will integrate a wide range of topics, from the synthesis of nanoscale materials to their charge transport properties and incorporation into electronic devices.
在这个由化学系实验物理化学计划资助的项目中,哥伦比亚大学的Latha Venkataraman教授将寻求揭示和理解附着在金属电极上的单分子的性质,同时教育学生关于纳米级物理,化学和工程的相互作用。集成电路工业中的元件尺寸正在快速接近纳米尺度,这需要在单分子水平上详细了解其基本特性。具体来说,这项工作提出开发和建立一个高分辨率的单轴导电原子力显微镜,以同时测量电子在单个分子结上转移的速率,以及打破结所需的力。电子性质,如结电阻和电流-电压特性,与本征结性质有关,包括分子长度,构象和分子轨道与金属费米能级的对齐。力的测量揭示了结合强度、结合能和结的稳定性,这些性质不能通过电测量直接探测。这里提出的研究将探索单分子电路的这两个相关但不同的方面。拟议活动的一个组成部分是向高中生、本科生和研究生介绍纳米科学,旨在招募他们从事科学事业。 此外,将为高年级本科生和研究生开发一门新的纳米技术课程,该课程将整合广泛的主题,从纳米材料的合成到其电荷传输特性并纳入电子设备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Latha Venkataraman其他文献

A single-molecule blueprint for synthesis
用于合成的单分子蓝图
  • DOI:
    10.1038/s41570-021-00316-y
  • 发表时间:
    2021-08-25
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Ilana Stone;Rachel L. Starr;Yaping Zang;Colin Nuckolls;Michael L. Steigerwald;Tristan H. Lambert;Xavier Roy;Latha Venkataraman
  • 通讯作者:
    Latha Venkataraman
Breaking Down Resonance: Nonlinear Transport and the Breakdown of Coherent Tunneling Models in Single Molecule Junctions
  • DOI:
    https://doi.org/10.1021/acs.nanolett.9b00316
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    E-Dean Fung;David Gelbwaser;Jeffrey Taylor;Jonathan Low;Jianlong Xia;Iryna Davydenko;Luis M. Campos;Seth Marder;Uri Peskin;Latha Venkataraman
  • 通讯作者:
    Latha Venkataraman
Correction: Electric-field-induced coupling of aryl iodides with a nickel(0) complex
更正:电场诱导芳基碘化物与镍(0)络合物的偶联
  • DOI:
    10.1039/d2cc90388a
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Nicholas M. Orchanian;Sophia Guizzo;Michael L. Steigerwald;Colin Nuckolls;Latha Venkataraman
  • 通讯作者:
    Latha Venkataraman
Monte Carlo simulation of energy dissipation of recombining hydrogen in a maze
  • DOI:
    10.1007/bf00753383
  • 发表时间:
    1995-11-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    M. F. Chang;Latha Venkataraman;I. F. Silvera
  • 通讯作者:
    I. F. Silvera
Single-molecule junctions beyond electronic transport
除了电子传输之外的单分子结
  • DOI:
    10.1038/nnano.2013.91
  • 发表时间:
    2013-06-05
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Sriharsha V. Aradhya;Latha Venkataraman
  • 通讯作者:
    Latha Venkataraman

Latha Venkataraman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Latha Venkataraman', 18)}}的其他基金

Paired Radical States in Molecular Wires: 1D Topological Insulators and Beyond
分子线中的成对自由基态:一维拓扑绝缘体及其他
  • 批准号:
    2241180
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CCI Phase I: NSF Center for Chemistry with Electric Fields (ChEF)
CCI 第一阶段:NSF 电场化学中心 (ChEF)
  • 批准号:
    2023568
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Towards One-Dimensional Single-Molecule Topological Insulators
走向一维单分子拓扑绝缘体
  • 批准号:
    1807580
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Beyond Single-Molecule Conductance: Understanding and Controlling Charge Transport by External Stimuli and Supramolecular Interactions
超越单分子电导:通过外部刺激和超分子相互作用理解和控制电荷传输
  • 批准号:
    1507440
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Understanding the Design and Conduction of Materials for Organic Electronics at the Molecular Level
在分子水平上了解有机电子材料的设计和传导
  • 批准号:
    1206202
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Postdoctoral Fellowships
Mechanical control of the electronic properties of 2D ferroelectrics
二维铁电体电子特性的机械控制
  • 批准号:
    2212965
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Elucidation of peculiar strain sensitivity of strongly correlated electronic nanomaterials and creation of giant mechanical-electrical response
阐明强相关电子纳米材料的特殊应变敏感性并产生巨大的机电响应
  • 批准号:
    22H01362
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mechanical movement in electronic products and structures
电子产品和结构中的机械运动
  • 批准号:
    2751364
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Studentship
CAREER: Scalable Lamination Printing of Near Atomically Thin Electronic Materials with Mechanical Stretchability
职业:具有机械拉伸性的近原子薄电子材料的可扩展层压印刷
  • 批准号:
    2142310
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Postdoctoral Fellowships
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Postdoctoral Fellowships
Applying deep learning to large-scale quantum mechanical atomistic simulations and electronic structure theory
将深度学习应用于大规模量子力学原子模拟和电子结构理论
  • 批准号:
    518314-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Piezoelectric and Magnetostrictive Mechanical Design and Development of High Energy Conversion in Electronic Composite Materials
电子复合材料高能量转换的压电和磁致伸缩机械设计与开发
  • 批准号:
    19H00733
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Investigation of damage mechanism of metal nanoparticle interconnect used in flexible electronic circuits under electrical and mechanical loadings
柔性电子电路用金属纳米粒子互连在电气和机械负载下的损伤机制研究
  • 批准号:
    19K04084
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了