CAREER: New Directions in Probabilistic Topic Models

职业:概率主题模型的新方向

基本信息

  • 批准号:
    0745520
  • 负责人:
  • 金额:
    $ 54.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

There is a growing need for (semi-)automated tools to analyze and organize large collections of electronic information. In response, there is a surge of research on machine learning of probabilistic topic models, which automatically discover the hidden thematic structure in a large collection of documents. Once made explicit, this hidden structure facilitates browsing, searching, organizing, and summarizing vast amounts of information.This research program will significantly build on the current state-of-the-art in topic modeling.1. We will develop topic modeling algorithms that discover trends in document streams. Modeling evolutionary and revolutionary change of topics over time will be an important new capability for corpora analysts, providing methods of forecasting and understanding the changing patterns in serial collections such as news feeds, scientific publications, or web blogs.2. Many modern corpora, such as Wikipedia, contain important links between the documents. We will develop topic models of such interconnected collections that explicitly represent and generalize inter-document and/or inter-topic relationships. Such relationships may be hyper-links, scholarly citation, shared authorship, or statistical correlations. Capturing the patterns in these connections, and understanding their relationship to the texts, will have important implications for a great variety of scholarly, commercial, and personal 'recommender' systems.3. Very often, analysts and other users approach a corpora with particular questions in mind. To facilitate focused, personalized exploration, we will develop supervised methods for discovering topic models that predict document-specific variables -- notably forms of relevance -- of online material such as scholarly papers, legal briefs, media sources, and product specifications.This project addresses significant current limitations of topic modeling, and will provide practical new research and education tools for understanding and organizing modern repositories of information. We will make these tools available as open-source software to support and encourage their application to real-world problems, and we will fold the results of our research into ongoing education and outreach programs.
对分析和组织大量电子信息的(半自动)工具的需求日益增长。与之相对应的是,概率主题模型的机器学习研究激增,它可以自动发现大量文档中隐藏的主题结构。一旦明确,这种隐藏的结构有助于浏览、搜索、组织和总结海量信息。这项研究计划将大大建立在当前最先进的主题建模1的基础上。我们将开发主题建模算法,以发现文档流中的趋势。对主题随时间的演变和革命性变化进行建模将是语料库分析员的一项重要新能力,它提供了预测和理解新闻馈送、科学出版物或网络博客等系列集合中变化模式的方法。许多现代语料库,如维基百科,都包含文档之间的重要链接。我们将开发这种相互关联的集合的主题模型,明确表示和概括文档间和/或主题间的关系。这种关系可能是超链接、学术引文、共享作者或统计相关性。捕捉这些连接中的模式,并了解它们与文本的关系,将对各种学术、商业和个人‘推荐’系统具有重要意义。通常,分析师和其他用户在处理语料库时会考虑到特定的问题。为了促进有重点的、个性化的探索,我们将开发发现主题模型的监督方法,这些方法可以预测学术论文、法律摘要、媒体来源和产品规格等在线材料的文档特定变量--特别是相关形式。这个项目解决了主题建模目前的重大局限性,并将为理解和组织现代信息库提供实用的新研究和教育工具。我们将以开源软件的形式提供这些工具,以支持和鼓励它们应用于现实世界的问题,我们将把我们的研究成果纳入正在进行的教育和推广计划中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Blei其他文献

Correction to: Counterfactual inference for consumer choice across many product categories
  • DOI:
    10.1007/s11129-021-09245-y
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Robert Donnelly;Francisco J. R. Ruiz;David Blei;Susan Athey
  • 通讯作者:
    Susan Athey
Overlapping clustering methods for networks
网络的重叠聚类方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Blei;Elena A. Erosheva
  • 通讯作者:
    Elena A. Erosheva
Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor–immune hubs
星鱼整合空间转录组学和组织学数据以揭示异质性肿瘤-免疫枢纽
  • DOI:
    10.1038/s41587-024-02173-8
  • 发表时间:
    2024-03-21
  • 期刊:
  • 影响因子:
    41.700
  • 作者:
    Siyu He;Yinuo Jin;Achille Nazaret;Lingting Shi;Xueer Chen;Sham Rampersaud;Bahawar S. Dhillon;Izabella Valdez;Lauren E. Friend;Joy Linyue Fan;Cameron Y. Park;Rachel L. Mintz;Yeh-Hsing Lao;David Carrera;Kaylee W. Fang;Kaleem Mehdi;Madeline Rohde;José L. McFaline-Figueroa;David Blei;Kam W. Leong;Alexander Y. Rudensky;George Plitas;Elham Azizi
  • 通讯作者:
    Elham Azizi
Joint representation and visualization of derailed cell states with Decipher
  • DOI:
    10.1186/s13059-025-03682-8
  • 发表时间:
    2025-07-23
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Achille Nazaret;Joyxa0Linyue Fan;Vincent-Philippe Lavallée;Cassandra Burdziak;Andrewxa0E. Cornish;Vaidotas Kiseliovas;Robertxa0L. Bowman;Ignas Masilionis;Jaeyoung Chun;Shiraxa0E. Eisman;James Wang;Justin Hong;Lingting Shi;Rossxa0L. Levine;Linas Mazutis;David Blei;Dana Pe’er;Elham Azizi
  • 通讯作者:
    Elham Azizi

David Blei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Blei', 18)}}的其他基金

New Directions in Bayesian Model Criticism
贝叶斯模型批评的新方向
  • 批准号:
    2311108
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
RI: Small: New Directions in Probabilistic Deep Learning: Exponential Families, Bayesian Nonparametrics and Empirical Bayes
RI:小:概率深度学习的新方向:指数族、贝叶斯非参数和经验贝叶斯
  • 批准号:
    2127869
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
BIGDATA: Mid-Scale: ESCE: Collaborative Research: Discovery and Social Analytics for Large-Scale Scientific Literature
大数据:中等规模:ESCE:协作研究:大规模科学文献的发现和社会分析
  • 批准号:
    1502780
  • 财政年份:
    2014
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
BIGDATA: Mid-Scale: ESCE: Collaborative Research: Discovery and Social Analytics for Large-Scale Scientific Literature
大数据:中等规模:ESCE:协作研究:大规模科学文献的发现和社会分析
  • 批准号:
    1247664
  • 财政年份:
    2013
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
  • 批准号:
    2339274
  • 财政年份:
    2024
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
  • 批准号:
    2239106
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in p-adic Heights and Rational Points on Curves
职业生涯:p-adic 高度和曲线上有理点的新方向
  • 批准号:
    1945452
  • 财政年份:
    2020
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
CAREER: Shape Analysis in Submanifold Spaces: New Directions for Theory and Algorithms
职业:子流形空间中的形状分析:理论和算法的新方向
  • 批准号:
    1945224
  • 财政年份:
    2020
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Graph Algorithms
职业:图算法的新方向
  • 批准号:
    1750140
  • 财政年份:
    2018
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
2016 Presidential and AAAS Mentor Alumni Meeting: New Directions for Inclusive STEM Education & Career Mentoring
2016 年总统暨 AAAS 导师校友会:包容性 STEM 教育新方向
  • 批准号:
    1631967
  • 财政年份:
    2016
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
CAREER: New Directions for Metric Learning
职业:度量学习的新方向
  • 批准号:
    1550179
  • 财政年份:
    2015
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Deep Representation Learning from Complex Multimodal Data
职业:复杂多模态数据深度表示学习的新方向
  • 批准号:
    1453651
  • 财政年份:
    2015
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Spatial Statistics
职业:空间统计的新方向
  • 批准号:
    1519890
  • 财政年份:
    2014
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Arithmetic Computation
职业:算术计算的新方向
  • 批准号:
    1350572
  • 财政年份:
    2014
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了