Application of homotopy theoretic methods in algebraic geometry by means of generalized Deligne-Beilinson cohomology and cobordism

广义Deligne-Beilinson上同调和共边同伦理论方法在代数几何中的应用

基本信息

  • 批准号:
    185271138
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2010
  • 资助国家:
    德国
  • 起止时间:
    2009-12-31 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

Differential cohomology groups of Cheeger and Simons for real smooth manifolds combine the geometric information of real differential forms with the global topological information of integer cohomology. Hopkins and Singer developed a new perspective on this construction that allows to generalize this idea to any cohomology theory, given by a spectrum, and to obtain generalized differential cohomology theories. Examples for this construction are differential K-theory and differential real bordism.For complex algebraic varieties, Deligne-Beilinson cohomology combines the geometric information of holomorphic differential forms with the global topological information of integer cohomology. The basic idea for the joint project with Michael Hopkins is to develop in a similar way generalized analytic Deligne-Beilinson cohomology theories for complex algebraic varieties. In particular, we would like to construct a generalized analytic cobordism theory for smooth complex varieties.The final goal of the project consists in the construction of a new cycle map for complex varieties from integer Chow groups to a quotient of our generalized cobordism theory in analogy to the idea of Totaro to factor the classical cycle map to cohomology through a quotient of complex cobordism. Moreover, we hope to obtain a generalized Abel-Jacobi map that should allow us to get new insights in the classical and the morphic Abel-Jacobi map defined by Walker.This is closely related to my initial project to study the l-adic integral cycle map for varieties over finite fields by means of the cycle map in etale cobordism.
Cheeger和Simons关于真实的光滑流形的微分上同调群联合收割机了真实的微分形式的几何信息和整数上同调的整体拓扑信息。霍普金斯和辛格开发了一个新的角度对这一建设,使这一想法推广到任何上同调理论,给出了一个频谱,并获得广义微分上同调理论。对于复代数簇,Deligne-Beilinson上同调结合了全纯微分形式的几何信息和整数上同调的整体拓扑信息.基本思想的联合项目与迈克尔霍普金斯是发展以类似的方式广义分析Deligne-Beilinson上同调理论的复杂代数品种。特别是,我们想构建一个广义解析cobordism理论的光滑复杂的品种。该项目的最终目标包括在建设一个新的循环映射的复杂品种从整数周群的商我们的广义cobordism理论在类似的想法Totaro因素的经典循环映射的上同调通过商的复杂cobordism。此外,我们还希望得到一个广义Abel-Jacobi映射,这将使我们对步行者定义的经典Abel-Jacobi映射和形态Abel-Jacobi映射有新的认识,这与我最初的项目--利用有限域上簇的l-adic积分循环映射研究有限域上簇的l-adic积分循环映射密切相关.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Gereon Quick其他文献

Dr. Gereon Quick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Homotopy theoretic study of algebraic varieties with modulus
带模代数簇的同伦理论研究
  • 批准号:
    22KJ1016
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Homotopy theoretic study of Floer theory and its applications
Floer理论的同伦理论研究及其应用
  • 批准号:
    16K17590
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Structural homotopy theory: a category-theoretic study
结构同伦理论:范畴论研究
  • 批准号:
    DP130101969
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Development of homotopy theoretic methods in the study of diffeological spaces
微分空间研究中同伦理论方法的发展
  • 批准号:
    24540081
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homotopy-Theoretic Aspects of the Theory of Motives
动机理论的同伦理论方面
  • 批准号:
    0805531
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Homotopy theoretic methods in the study of moduli spaces
模空间研究中的同伦理论方法
  • 批准号:
    0505740
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Homotopy Theoretic Study of Higher Dimensional Categories
高维范畴的同伦理论研究
  • 批准号:
    16540061
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homotopy Theoretic Investigations in Higher K-theory, High-dimensional Data Analysis, and High Dimensional Manifold Theory
高阶 K 理论、高维数据分析和高维流形理论中的同伦理论研究
  • 批准号:
    0406992
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Homotopy theoretic study of singularities of smooth mappings
光滑映射奇点的同伦理论研究
  • 批准号:
    11640081
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homotopy theory in group theoretic aspects
群论方面的同伦论
  • 批准号:
    10640064
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了