CAREER:Multiscale Thermodynamic Tools for Probing the Stability and Function of Natively Unfolded Proteins

职业:用于探测天然未折叠蛋白质的稳定性和功能的多尺度热力学工具

基本信息

  • 批准号:
    0746955
  • 负责人:
  • 金额:
    $ 43.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-01 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Proposal Title: CAREER: Multi-scale Thermodynamic Tools for Probing the Stability andFunction of Natively Unfolded ProteinsPrincipal Investigator: Henry S. Ashbaugh Institution: Tulane University Proposal No: CBET-0746955Natively unfolded proteins are emerging as an important class of biomacromolecules that carry out necessary biological functions despite their lack of well-defined three-dimensional structures, contrary to traditional ideas linking protein shape and function. As for folded proteins, the propensity for a polypeptide to be an intrinsically disordered coil is encoded in its amino acid sequence. To relate lack of structure to function, natively unfolded proteins must first be identified. To date, sequence based correlations for the prediction of native coil stability have been developed only through empirical database analysis with little fundamental basis. Specific functions for these proteins that have been identified include: ligand / DNA binding, cell signaling, the dispersion of cytoskeletal components, and trans-nuclear membrane transport regulation.Unfortunately, a comprehensive theoretical approach for predicting unfolded protein stability and function has been slow to develop.Intellectual Merit. The PIs propose to develop new simulation strategies for modeling the conformational stability of intrinsically disordered proteins and the function of unfolded nuclear pore associated proteins in regulating trans-nuclear membrane transport based on solute size. Initial simulations will focus on the multiscale modeling of natively unfolded proteins and their conformational stability. Foundational molecular simulations will investigate the solution thermodynamics of component amino acids and probe side chain interactions that destabilize peptide secondary structural elements in favor of unstructured coils. Thermodynamic averages determined from these simulations will be coarse-grained to winnow non-essential degrees-of freedom that diminish computational efficiency, while retaining peptide conformational degrees of-freedom and chemical fidelity using new constraint techniques developed in the PIs lab. Thesecoarse-grained models will provide a deeper thermodynamic and structural understanding of empirical predictors for natively unfolded protein stability. Subsequent simulations will take advantage of the techniques developed herein to model natively unfolded protein function. Specifically, the PIs will investigate interactions between unfolded nuclear pore proteins to discriminate between conflicting mechanisms for size selectivity, virtual gating versus the selective phase model. The modeling efforts will be validated against experiments, and results generated will be used as inputs to continuum transport models developed by our collaborators.Broader Impacts. Beyond unstructured bio-macromolecules, the techniques developed in this proposal are general and constitute a fundamentally new approach towards modeling the properties of polymeric and colloidal materials from the bottom-up. Moreover, the engineering of unstructured polypeptides for emerging applications, like the design of facilitated transport membranes, requires a fundamental understanding of how their stability and polymer coil-like properties depend on amino acid sequence.In an effort to revitalize the academic environment of New Orleans, the PI is initiating aservice-learning component in the undergraduate curriculum through the introduction of a new course, "Chemistry and Engineering Science in the Community." In this course, Tulane students interact with local public school students, making presentations on the everyday use of the scientific method to arrive at evidence based explanations. Efforts are also being directed towards recruiting undergraduate participation in research through a freshman seminar series and the Louis Stokes Louisiana Alliance for Minority Participation program at Tulane University. It is hoped through the outreach activities to encourage students from diverse groups to consider lifelong careers in science and engineering, while providing a motivated work force for the local chemical industry effected by Hurricane Katrina.
摘要 提案标题:职业:用于探测天然未折叠蛋白质的稳定性和功能的多尺度热力学工具主要研究者:Henry S. Ashbaugh 机构:杜兰大学提案编号:CBET-0746955 天然未折叠蛋白质正在成为一类重要的生物大分子,尽管它们缺乏明确定义的三维结构,但仍能执行必要的生物功能 结构,与连接蛋白质形状和功能的传统观念相反。对于折叠蛋白质,多肽本质上无序卷曲的倾向是由其氨基酸序列编码的。为了将结构的缺乏与功能联系起来,必须首先鉴定天然未折叠的蛋白质。迄今为止,用于预测天然线圈稳定性的基于序列的相关性仅通过经验数据库分析来开发,几乎没有任何基础依据。已确定的这些蛋白质的具体功能包括:配体/DNA 结合、细胞信号传导、细胞骨架成分的分散以及跨核膜转运调节。不幸的是,预测未折叠蛋白质稳定性和功能的综合理论方法发展缓慢。智力优点。 PI 建议开发新的模拟策略,用于模拟本质无序蛋白质的构象稳定性以及未折叠核孔相关蛋白质在根据溶质大小调节跨核膜转运中的功能。初始模拟将重点关注天然未折叠蛋白质及其构象稳定性的多尺度建模。基础分子模拟将研究组分氨基酸的溶液热力学,并探测侧链相互作用,这些相互作用使肽二级结构元件不稳定,有利于非结构化线圈。从这些模拟中确定的热力学平均值将是粗粒度的,以筛选出降低计算效率的非必要自由度,同时使用 PI 实验室开发的新约束技术保留肽构象自由度和化学保真度。这些粗粒度模型将为天然未折叠蛋白质稳定性的经验预测因子提供更深入的热力学和结构理解。随后的模拟将利用本文开发的技术来模拟天然未折叠的蛋白质功能。具体来说,PI 将研究未折叠核孔蛋白之间的相互作用,以区分大小选择性、虚拟门控与选择性相模型的冲突机制。建模工作将根据实验进行验证,生成的结果将用作我们合作者开发的连续传输模型的输入。更广泛的影响。除了非结构化生物大分子之外,该提案中开发的技术是通用的,构成了一种从下到上模拟聚合物和胶体材料特性的全新方法。此外,针对新兴应用的非结构化多肽工程,例如促进传输膜的设计,需要对它们的稳定性和聚合物线圈性质如何依赖于氨基酸序列有一个基本的了解。为了振兴新奥尔良的学术环境,PI正在通过引入一门新课程“化学”在本科课程中启动服务学习部分 和社区中的工程科学。”在本课程中,杜兰大学的学生与当地公立学校的学生互动,介绍如何日常使​​用科学方法来得出基于证据的解释。还致力于通过新生研讨会系列和杜兰大学路易斯斯托克斯路易斯安那州少数族裔参与计划招募本科生参与研究。希望通过外展活动鼓励不同群体的学生考虑终身从事科学和工程职业,同时为受卡特里娜飓风影响的当地化学工业提供积极主动的劳动力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Ashbaugh其他文献

Henry Ashbaugh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Ashbaugh', 18)}}的其他基金

REU Site: Summer MAterials Research @ Tulane (SMART)
REU 站点:杜兰大学夏季材料研究 (SMART)
  • 批准号:
    1852274
  • 财政年份:
    2019
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Standard Grant
Manipulating Supramolecular Assembly in Water and Aqueous Mixtures
操纵水和水混合物中的超分子组装
  • 批准号:
    1805167
  • 财政年份:
    2018
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Standard Grant
REU Site: Summer MAterials Research @ Tulane (SMART)
REU 站点:杜兰大学夏季材料研究 (SMART)
  • 批准号:
    1460637
  • 财政年份:
    2015
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Continuing Grant
Capacious Deep-Cavity Cavitand/Hydrophobic Guest Assemblies with Tunable Interior Volumes
具有可调节内部体积的宽敞深腔空腔/疏水客组件
  • 批准号:
    1403167
  • 财政年份:
    2014
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Standard Grant

相似海外基金

Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
  • 批准号:
    AH/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Research Grant
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Fellowship
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
  • 批准号:
    EP/X029093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Fellowship
Mechanistic Multiscale Modelling Of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
  • 批准号:
    EP/X032019/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Research Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Continuing Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/2
  • 财政年份:
    2024
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Fellowship
Mechanistic Multiscale Modelling of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
  • 批准号:
    EP/X031969/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Research Grant
CAREER: Multiscale Bacterial Transport in Porous Media
职业:多孔介质中的多尺度细菌传输
  • 批准号:
    2340501
  • 财政年份:
    2024
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Continuing Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
  • 批准号:
    2340918
  • 财政年份:
    2024
  • 资助金额:
    $ 43.1万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了