CAREER: From O(N) to O(M): Scalable Algorithms for Large Scale Electromagnetics-Based Analysis and Design of Next Generation VLSI Circuits

职业:从 O(N) 到 O(M):用于下一代 VLSI 电路的基于大规模电磁学分析和设计的可扩展算法

基本信息

  • 批准号:
    0747578
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-01 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

Integrative, Hybrid and Complex SystemsPurdue UniversityDan JiaoCAREER: From O(N) to O(M): Scalable Algorithms for Large Scale Electromagnetics-Based Analysis and Design of Next Generation VLSI CircuitsIntellectual Merit: As on-chip design scales into the nanometer regime, full-wave electromagnetics (EM) analysis has increasingly become essential due to reduced feature sizes that lead to subwavelength optical lithography, increased clock frequency, the transition from single core to multicore, and increased levels of integration. However, the design of next-generation integrated circuits results in numerical problems of very large scale, requiring billions of parameters to describe accurately. State-of-the-art EM analysis algorithms require computation and memory that scales with N, the number of unknowns. This research focuses on reducing the complexity of required computation and memory to scale with M, the number of design decision parameters, which is a much smaller value than the number of unknowns. This reduction in complexity is required to enable the EM analysis of next-generation very large-scale integrated (VLSI) circuits. Instead of solving the original matrix of O(N) as it is, we construct a reduced matrix that involves only the O(M) parameters needed for the circuit design decision, while incorporating the effects of other parameters. Moreover, the original and reduced system matrices possess, or can be formulated to possess, special structure, for example a sparse banded structure. The structure will be explored or created to reduce the complexity of the reduction and the solution of the reduced system matrix under the framework of semi-separable matrices.Broader Impact: The project's education objectives are to effectively bridge the education in fields with that in circuits and to effectively introduce the human dimension into the integrated circuit-field education. Three education programs will be developed: (i) an undergraduate course in "Circuits and Fields," (ii) a graduate "High-Frequency Computer-Aided Design Studio," and (iii) a "Working-with-Differences Learning Community." Assessment tasks will evaluate the effectiveness of these programs. This research has the potential to contribute significantly to solving scalability problems with existing computational EM techniques for integrated circuit design. In addition, it has the potential to benefit a wide range of engineering applications in which large problem sizes are a bottleneck in preventing the successful design and analysis of advanced system
集成、混合和复杂系统Purdue University焦丹CAREER:From O(N)to O(M):Scalable Algorithms for Large Scale Electromagnetic Based Analysis and Design of Next Generation VLSI Circuits智能优势:随着片上设计扩展到纳米范围,全波电磁学(EM)分析变得越来越重要,这是由于导致亚波长光刻的特征尺寸减小,时钟频率增加,从单核到多核的过渡,以及更高的集成水平。 然而,下一代集成电路的设计导致非常大规模的数值问题,需要数十亿个参数来精确描述。 最先进的EM分析算法需要与未知数N成比例的计算和存储器。 这项研究的重点是减少所需的计算和内存的复杂性,以缩放M,设计决策参数的数量,这是一个比未知数的数量小得多的值。 需要降低复杂性才能对下一代超大规模集成(VLSI)电路进行EM分析。 我们不是按原样求解O(N)的原始矩阵,而是构造一个简化矩阵,该矩阵仅涉及电路设计决策所需的O(M)参数,同时考虑了其他参数的影响。 此外,原始和简化的系统矩阵具有或可以被公式化为具有特殊结构,例如稀疏带状结构。 在半可分矩阵的框架下,探索或创建该结构,以降低约简和约简后系统矩阵求解的复杂性。更广泛的影响:该项目的教育目标是有效地将领域教育与电路教育联系起来,并有效地将人文因素引入集成电路领域教育。 将制定三个教育方案:(一)“电路与场”本科课程,(二)研究生“高频计算机辅助设计工作室”,和(三)“与差异一起工作学习社区”。“评估任务将评估这些方案的有效性。 这项研究有可能大大有助于解决可扩展性问题与现有的计算EM技术的集成电路设计。 此外,它有可能有利于广泛的工程应用,其中大的问题大小是阻碍先进系统成功设计和分析的瓶颈

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Jiao其他文献

Real-Time Precision Prediction of 3-D Package Thermal Maps via Image-to-Image Translation
通过图像到图像转换实时精确预测 3D 封装热图
Paleofire indicated by triterpenes and charcoal in a culture bed in eastern Kunlun Mountain, Northwest China
  • DOI:
    10.1007/s11707-009-0053-1
  • 发表时间:
    2009-09-18
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Dan Jiao;Shucheng Xie;Huan Yang;Shuyuan Xiang;Xinjun Wang
  • 通讯作者:
    Xinjun Wang
JAK/STAT signaling as a key regulator of ferroptosis: mechanisms and therapeutic potentials in cancer and diseases
  • DOI:
    10.1186/s12935-025-03681-6
  • 发表时间:
    2025-03-07
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Yimeng Dai;Chunguo Cui;Dan Jiao;Xuewei Zhu
  • 通讯作者:
    Xuewei Zhu
Enhanced propionate and butyrate metabolism in cecal microbiota contributes to cold-stress adaptation in sheep
  • DOI:
    10.1186/s40168-025-02096-9
  • 发表时间:
    2025-04-24
  • 期刊:
  • 影响因子:
    12.700
  • 作者:
    Xindong Cheng;Yanping Liang;Kaixi Ji;Mengyu Feng;Xia Du;Dan Jiao;Xiukun Wu;Chongyue Zhong;Haitao Cong;Guo Yang
  • 通讯作者:
    Guo Yang
Patch-Based Perfectly Matched Layer Scheme in Three-Dimensional Unstructured Meshes
三维非结构化网格中基于面片的完美匹配层方案

Dan Jiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Jiao', 18)}}的其他基金

FuSe-TG: Open, Multiscale, Application-Agnostic Platform for Heterogeneous System-in-Package Co-Design
FuSe-TG:开放、多尺度、与应用无关的异构系统级封装协同设计平台
  • 批准号:
    2235414
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SHF: SMALL: Multiphysics Simulation Algorithms and Experimental Methods for the Development of Cu/Graphene/TMD Hybrid Interconnect Solution
SHF:SMALL:用于开发 Cu/石墨烯/TMD 混合互连解决方案的多物理场仿真算法和实验方法
  • 批准号:
    1619062
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A Hierarchical Matrix Framework for Electromagnetics-Based Analysis and Design of Next Generation ICs
用于下一代 IC 电磁学分析和设计的分层矩阵框架
  • 批准号:
    0702567
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
  • 批准号:
    2336469
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Fast Scalable Graph Algorithms
职业:快速可扩展图算法
  • 批准号:
    2340048
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
  • 批准号:
    2238486
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Scalable Algorithms for Nonlinear, Large-Scale Inverse Problems Governed by Dynamical Systems
职业:动态系统控制的非线性、大规模反问题的可扩展算法
  • 批准号:
    2145845
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Scalable binning algorithms for genome-resolved metagenomics
职业:用于基因组解析宏基因组学的可扩展分箱算法
  • 批准号:
    1845890
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Pushing the Theoretical Limits of Scalable Distributed Algorithms
职业:突破可扩展分布式算法的理论极限
  • 批准号:
    1845146
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Towards Fast and Scalable Algorithms for Big Proteogenomics Data Analytics
职业:面向蛋白质基因组大数据分析的快速且可扩展的算法
  • 批准号:
    1925960
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Towards Fast and Scalable Algorithms for Big Proteogenomics Data Analytics
职业:面向蛋白质基因组大数据分析的快速且可扩展的算法
  • 批准号:
    1651724
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Scalable Algorithms for Spectral Analysis of Massive Networked Systems
职业:大规模网络系统频谱分析的可扩展算法
  • 批准号:
    1651433
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了