A Hierarchical Matrix Framework for Electromagnetics-Based Analysis and Design of Next Generation ICs

用于下一代 IC 电磁学分析和设计的分层矩阵框架

基本信息

  • 批准号:
    0702567
  • 负责人:
  • 金额:
    $ 41.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Proposal ID: 0702567 PI name: Dan Jiao, Venkataramanan Balakrishnan, and Chenk-Kok KohInst: Purdue UniversityTitle:A hierarchical matrix framework for electromagnetics-based analysis and design of next generation ICsABSTRACTAs IC design scales into the deep submicron and nanometer regimes, electromagnetics-based analysis has become essential. While so-called computational electromagentics (CEM) has found many successful engineering applications, the performance of existing CEM techniques is still inadequate when tackling realistic IC design problems. The analysis and design of next-generation ICs using the most accurate EM-based models results in numerical problems of very large scale, requiring up to billions of parameters to describe them accurately. However, even the state-of-art techniques do not scale well when applied to matrices of large sizes encountered with the analysis and design of next-generation ICs. In this proposal, the PIs will address the problem of full-wave analysis and design for next-generation integrated circuits, considering numerical problems arising from both partial differential equation (PDE) based models and integral equation (IE) based models. The proposed solution techniques hinge on the observation that the matrices underlying the numerical problems or their inverses are ``sparse-banded,'' wherein the matrices parametrizing the models or their inverses have (either exactly or approximately) a sparse, block-banded structure. There exists a general mathematical framework one that includes sparse-banded matrices as a special case called the ``Hierarchical Matrix'' framework, which enables a highly compact representation and efficient numerical computation. The hierarchical matrix framework will form the basis of the techniques proposed for the solution of the underlying numerical problems. The techniques combine an appreciation of the physics underlying the problems with elegant results from matrix theory and sound computational principles. This combined with the increased availability of distributed computing resources offers another rich new avenue of research. The philosophy underlying the proposed approach is that by combining advances in theory (i.e., understanding) with progress in optimization and numerical linear algebra (i.e., numerical computation), one can realize enormous advances in the state of the art in research. The PIs have considerable experience with incorporating this philosophy in their own educational efforts. The graduate students who participate in the proposed effort will be trained with a broad range of skills, in areas such as electromagnetics, numerical linear algebra, and parallel computing fundamentals. Undergraduate research projects will provide an integrated research experience to students from the sophomore through the senior years. The PIs have a history of collaboration, commitment to teaching, and fostering diversity in the workplace, and are thus well-positioned to involve a diverse population of students in the research and teaching activities envisioned in this proposal.
提案ID:0702567 PI名称:Dan Jiao,Venkataramanan Balakrishnan和Chenk-Kok KohInst:普渡大学标题:基于电磁学的下一代IC分析和设计的分层矩阵框架摘要随着IC设计进入深亚微米和纳米区域,基于电磁学的分析已变得必不可少。虽然所谓的计算电磁学(CEM)已经在工程上得到了许多成功的应用,但现有的CEM技术在解决实际IC设计问题时仍然存在不足。使用最精确的基于EM的模型分析和设计下一代IC会导致非常大规模的数值问题,需要高达数十亿个参数才能准确地描述它们。然而,即使是最先进的技术,在应用于分析和设计下一代IC时遇到的大尺寸矩阵时,也不能很好地扩展。在这项建议中,PI将解决下一代集成电路的全波分析和设计问题,同时考虑基于偏微分方程(PDE)的模型和基于积分方程(IE)的模型所产生的数值问题。所提出的解决技术取决于这样的观察,即作为数值问题或其逆的基础的矩阵是“稀疏带状”的,其中将模型或其逆参数化的矩阵具有(精确地或近似地)稀疏的块带状结构。有一个通用的数学框架,其中包括作为特殊情况的稀疏带状矩阵,称为“层次矩阵”框架,它使高度紧凑的表示和有效的数值计算成为可能。分层矩阵框架将构成为解决基本数值问题而提出的技术的基础。这些技术将对潜在问题的物理学的欣赏与来自矩阵理论的优雅结果和合理的计算原理结合在一起。这一点,再加上分布式计算资源可用性的提高,提供了另一条丰富的新研究途径。提出的方法背后的哲学是,通过将理论的进步(即理解)与最优化和数值线性代数的进步(即数值计算)相结合,可以实现研究最新水平的巨大进步。在将这一理念融入他们自己的教育工作方面,私人投资机构拥有相当丰富的经验。参与这项计划的研究生将在电磁学、数值线性代数和并行计算基础等领域接受广泛的技能培训。本科生研究项目将为从大二到大四的学生提供综合研究体验。私人投资机构具有合作、致力于教学和促进工作场所多样性的历史,因此处于有利地位,可以让不同群体的学生参与本提案所设想的研究和教学活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Jiao其他文献

Real-Time Precision Prediction of 3-D Package Thermal Maps via Image-to-Image Translation
通过图像到图像转换实时精确预测 3D 封装热图
Paleofire indicated by triterpenes and charcoal in a culture bed in eastern Kunlun Mountain, Northwest China
  • DOI:
    10.1007/s11707-009-0053-1
  • 发表时间:
    2009-09-18
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Dan Jiao;Shucheng Xie;Huan Yang;Shuyuan Xiang;Xinjun Wang
  • 通讯作者:
    Xinjun Wang
JAK/STAT signaling as a key regulator of ferroptosis: mechanisms and therapeutic potentials in cancer and diseases
  • DOI:
    10.1186/s12935-025-03681-6
  • 发表时间:
    2025-03-07
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Yimeng Dai;Chunguo Cui;Dan Jiao;Xuewei Zhu
  • 通讯作者:
    Xuewei Zhu
Enhanced propionate and butyrate metabolism in cecal microbiota contributes to cold-stress adaptation in sheep
  • DOI:
    10.1186/s40168-025-02096-9
  • 发表时间:
    2025-04-24
  • 期刊:
  • 影响因子:
    12.700
  • 作者:
    Xindong Cheng;Yanping Liang;Kaixi Ji;Mengyu Feng;Xia Du;Dan Jiao;Xiukun Wu;Chongyue Zhong;Haitao Cong;Guo Yang
  • 通讯作者:
    Guo Yang
Patch-Based Perfectly Matched Layer Scheme in Three-Dimensional Unstructured Meshes
三维非结构化网格中基于面片的完美匹配层方案

Dan Jiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Jiao', 18)}}的其他基金

FuSe-TG: Open, Multiscale, Application-Agnostic Platform for Heterogeneous System-in-Package Co-Design
FuSe-TG:开放、多尺度、与应用无关的异构系统级封装协同设计平台
  • 批准号:
    2235414
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
SHF: SMALL: Multiphysics Simulation Algorithms and Experimental Methods for the Development of Cu/Graphene/TMD Hybrid Interconnect Solution
SHF:SMALL:用于开发 Cu/石墨烯/TMD 混合互连解决方案的多物理场仿真算法和实验方法
  • 批准号:
    1619062
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
CAREER: From O(N) to O(M): Scalable Algorithms for Large Scale Electromagnetics-Based Analysis and Design of Next Generation VLSI Circuits
职业:从 O(N) 到 O(M):用于下一代 VLSI 电路的基于大规模电磁学分析和设计的可扩展算法
  • 批准号:
    0747578
  • 财政年份:
    2008
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Matrix2000加速器的个性小数据在线挖掘
  • 批准号:
    2020JJ4669
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多模强激光场R-MATRIX-FLOQUET理论
  • 批准号:
    19574020
  • 批准年份:
    1995
  • 资助金额:
    7.5 万元
  • 项目类别:
    面上项目

相似海外基金

Interplay of the extracellular matrix and immune cells in lung pathology: key role for chitinase-like proteins
肺病理学中细胞外基质和免疫细胞的相互作用:几丁质酶样蛋白的关键作用
  • 批准号:
    MR/Y003683/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Research Grant
Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
  • 批准号:
    2330318
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
In situ quantitative monitoring of water environment chemistry and corrosion evolution of steel matrix around typical composite inclusions under different strains
不同应变下典型复合夹杂物周围钢基体水环境化学和腐蚀演化的原位定量监测
  • 批准号:
    24K17166
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Navigate homogenesis nephrogenesis in kidney organoid by microfabrication of 3D extracellular matrix.
通过 3D 细胞外基质的微加工来引导肾脏类器官中的同质肾发生。
  • 批准号:
    24K21098
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Universal approaches in random matrix theory
随机矩阵理论中的通用方法
  • 批准号:
    24K06766
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bioactive fragments of the extracellular matrix orchestrate lung epithelial cell repair.
细胞外基质的生物活性片段协调肺上皮细胞修复。
  • 批准号:
    BB/Y004183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Research Grant
Trust Matrix: A blockchain-driven system for business identity verification, increasing business efficiency and reducing fraud.
Trust Matrix:区块链驱动的企业身份验证系统,可提高业务效率并减少欺诈。
  • 批准号:
    10099958
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Collaborative R&D
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
  • 批准号:
    2468773
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Studentship
Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
  • 批准号:
    2330319
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了