CAREER: Engineering nervous tissue in vitro: Discovering the mechanisms of rapid axon stretch growth.
职业:体外工程神经组织:发现轴突快速拉伸生长的机制。
基本信息
- 批准号:0747615
- 负责人:
- 金额:$ 42.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-15 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Pfister0747615The research objective of this proposal is to define and analyze how stretching forces, associated with the growth of an organism, initiate unique neurobiological mechanisms to accommodate stretch growth of axons, driving the natural and rapid formation of long nerves and white matter tracts. In a developing embryo, axons navigate via a growth cone over seeming large distances to reach their targets. However, well after axons integrate with their targets and establish synaptic connections, animals and their nervous systems continue to grow several orders of magnitude. It is conceivable that stretching forces, exerted on axons by the enlarging body, serves as the mechanism that initiates and maintains stretch growth of the axon cylinder. An in vitro tissue engineering method has been developed to recapitulate this fundamentally different and rapid form of axonal growth that occurs during an organism's development. Far exceeding the rate of growth cone extension, this new-found form of nervous system growth, extreme axon stretch growth, can reach at least 10mm per day. These investigations mapped out the biomechanical boundaries that allow integrated axon bundles to quickly adapt to escalating stretch-growth rates, producing large axon fascicles 10cm in length and potentially much longer. Remarkably, these extreme stretch growth conditions also stimulate expansion of axon caliber, while maintaining a normal cytoskeletal ultrastructure and the ability to convey action potentials. Surprisingly, few studies have examined the effects of mechanical stretch on the rapid growth potential of axons. Axon stretch growth presents a novel opportunity to greatly expand upon the current understanding of nervous system growth with real potential to discover new targets to accelerate regeneration, offering an unexplored direction in nerve repair. Additional scientific benefits of this model could be the ability to engineer structured nervous tissue to study the pathology of nervous system diseases or the neurophysiological behavior of an organized network of neurons. Students at all levels will be included in this exciting and challenging opportunity to explore new territory in bioengineering and neuroscience. Opportunities and mentoring will also be provided for students with disabilities as well as encouragement and assistance for high school students with disabilities and their college plans.
本提案的研究目标是定义和分析与生物体生长相关的拉伸力如何启动独特的神经生物学机制,以适应轴突的拉伸生长,驱动长神经和白质束的自然快速形成。在一个发育中的胚胎中,轴突通过一个生长锥在看似很远的距离内到达它们的目标。然而,在轴突与它们的目标结合并建立突触连接之后,动物和它们的神经系统继续增长几个数量级。可以想象,扩大体对轴突施加的拉伸力是启动和维持轴突圆筒拉伸生长的机制。一种体外组织工程方法已经被开发出来,以概括有机体发育过程中发生的这种根本不同的快速轴突生长形式。这种新发现的神经系统生长形式,即轴突的极端伸展生长,远远超过了锥体的生长速度,每天至少可以达到10毫米。这些研究绘制了生物力学边界,使整合的轴突束能够快速适应不断升级的拉伸生长速率,产生长度为10厘米甚至更长的大型轴突束。值得注意的是,这些极端的拉伸生长条件也刺激轴突直径的扩张,同时保持正常的细胞骨架超微结构和传递动作电位的能力。令人惊讶的是,很少有研究考察机械拉伸对轴突快速生长潜力的影响。轴突拉伸生长提供了一个新的机会,大大扩展了目前对神经系统生长的理解,具有发现加速再生的新目标的真正潜力,为神经修复提供了一个未开发的方向。该模型的其他科学益处可能是能够设计结构神经组织来研究神经系统疾病的病理或有组织的神经元网络的神经生理行为。各个层次的学生都将参与这个令人兴奋和具有挑战性的机会,探索生物工程和神经科学的新领域。此外,还将为残疾学生提供机会和指导,并为残疾高中生及其大学计划提供鼓励和帮助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Pfister其他文献
Animal model of repeated low-level blast traumatic brain injury displays acute and chronic neurobehavioral and neuropathological changes
- DOI:
10.1016/j.expneurol.2021.113938 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:
- 作者:
Arun Reddy Ravula;Jose Rodriguez;Daniel Younger;Venkatesan Perumal;Ningning Shao;Kakulavarapu V. Rama Rao;Bryan Pfister;Namas Chandra - 通讯作者:
Namas Chandra
Bryan Pfister的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan Pfister', 18)}}的其他基金
Conference: 5th Council of Chairs Biomedical Engineering Education Summit; Newark, New Jersey; 29-31 May 2024
会议:第五届生物医学工程教育主席理事会峰会;
- 批准号:
2416708 - 财政年份:2024
- 资助金额:
$ 42.43万 - 项目类别:
Standard Grant
Linking how the mechanics of high rate and impulse of loading to the brain leads to varying types and levels of damage to neuronal structure and function.
将高速率和脉冲负荷的机制如何导致对神经元结构和功能的不同类型和水平的损伤联系起来。
- 批准号:
1706157 - 财政年份:2017
- 资助金额:
$ 42.43万 - 项目类别:
Standard Grant
MRI - Head Injury Biomechanics Measurement System
MRI - 头部损伤生物力学测量系统
- 批准号:
1428925 - 财政年份:2014
- 资助金额:
$ 42.43万 - 项目类别:
Standard Grant
REU site: Experiences in Neural Engineering
REU 网站:神经工程经验
- 批准号:
1156916 - 财政年份:2012
- 资助金额:
$ 42.43万 - 项目类别:
Continuing Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Co-engineering Hebbian and Homeostatic Plasticity Mechanisms to Induce Targeted Functional Neural Connectivity Changes
共同设计赫布和稳态可塑性机制以诱导有针对性的功能性神经连接变化
- 批准号:
10754414 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Optimizing CAR T therapy via metabolic engineering for thetreatment of GBM
通过代谢工程优化 CAR T 疗法治疗 GBM
- 批准号:
10722922 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Developing a Synthetic Adeno-Associated Virus (AAV) for Engineering Safer Gene Therapies
开发合成腺相关病毒(AAV)以设计更安全的基因疗法
- 批准号:
10629902 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Engineering lab-on-a-chip nervous system organoids for neuroprosthetic applications
用于神经修复应用的芯片神经系统类器官工程实验室
- 批准号:
2889429 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Studentship
Engineering protease biomarkers to guide surgical therapy for vestibular schwannoma and Neurofibromatosis Type 2
工程蛋白酶生物标志物指导前庭神经鞘瘤和 2 型神经纤维瘤病的手术治疗
- 批准号:
10571125 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Engineering T Cell Adoptive Therapy for Glioblastoma
胶质母细胞瘤的工程 T 细胞过继疗法
- 批准号:
10752995 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Engineering of Stretchable Neural Interfaces Using Liquid Metals for Stable Electrical Communication and Adaptive Stiffness Transformation
使用液态金属实现稳定电通信和自适应刚度变换的可拉伸神经接口工程
- 批准号:
10666925 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Patterning human forebrain organoids by engineering controlled biochemical microenvironment
通过工程控制的生化微环境来图案化人类前脑类器官
- 批准号:
10508548 - 财政年份:2022
- 资助金额:
$ 42.43万 - 项目类别:
Engineering the Neuronal Response to Electrical Microstimulation
设计神经元对电微刺激的反应
- 批准号:
10661509 - 财政年份:2022
- 资助金额:
$ 42.43万 - 项目类别: