Queue Prediction and Virtualized Scheduling Abstractions for NSF Batch-scheduled Cyberinfrastructure

NSF 批量调度网络基础设施的队列预测和虚拟化调度抽象

基本信息

  • 批准号:
    0751315
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-01-15 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

This project proposes to address and reduce the productivity-robbing uncertainty associated with queuing delay experienced by production batch queue users by providing a new and more accurate queue delay prediction services based on the QBETS system batch queue prediction system now available for the TeraGrid, developing and deploying a Virtual Advanced Reservation System (VARQ) that allows users to make probabilistic advanced reservations, and developing and deploying a Virtual Co-scheduling System (CO-VARQ) that combines probabilistic advanced reservations both to ?boost? success likelihood, and to enable co-scheduling. QBETS allows users to predict bounds on the delay individual jobs will experience while VARQ and COVARQ permit users to reserve in advance a specific future time slot for each job.
该项目建议通过提供一种新的更准确的队列延迟预测服务来解决和减少与生产批队列用户所经历的排队延迟相关的不确定性,该服务基于QBETS系统批队列预测系统,现在可用于TeraGrid,开发和部署一个虚拟高级预订系统(VARQ),允许用户进行概率高级预订。开发和部署一个虚拟协同调度系统(CO-VARQ),该系统结合了概率提前预约,以提高效率。成功的可能性,并启用协同调度。QBETS允许用户预测单个作业将经历的延迟范围,而VARQ和COVARQ允许用户提前为每个作业预留特定的未来时间段。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Wolski其他文献

Richard Wolski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Wolski', 18)}}的其他基金

Collaborative Research:Improving Low-Density Parity-Check Codes Through Algebraic Analysis of the Sum-Product Algorithm
合作研究:通过和积算法的代数分析改进低密度奇偶校验码
  • 批准号:
    0635391
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NeTS-NOSS: SENSIMIDE: Integrated Software Development and Multi-Mode Simulation for Large-Scale Sensor Networks
NeTS-NOSS:SENSIMIDE:大规模传感器网络的集成软件开发和多模式仿真
  • 批准号:
    0627183
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SCI: SGER: Predicting Batch Queue Waiting Time on ETF Resources
SCI:SGER:预测 ETF 资源的批量队列等待时间
  • 批准号:
    0526005
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NGS/Models to Support Performance-Engineering of Global Computations
支持全球计算性能工程的 NGS/模型
  • 批准号:
    0305390
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Developing a Resource-Aware Adaptive Compilation System for High-Performance Distributed Computing
开发用于高性能分布式计算的资源感知自适应编译系统
  • 批准号:
    0204019
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Developing Performance Monitoring and Analysis Middleware Based on the Network Weather Service
基于网络天气服务的性能监控与分析中间件开发
  • 批准号:
    0123911
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Effective Grid Programming with EveryWare and G-commerce
职业:使用 EveryWare 和 G-commerce 进行有效的网格编程
  • 批准号:
    0196500
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Effective Grid Programming with EveryWare and G-commerce
职业:使用 EveryWare 和 G-commerce 进行有效的网格编程
  • 批准号:
    0093166
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
  • 批准号:
    24K03872
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
  • 批准号:
    24K07131
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
  • 批准号:
    24K07230
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
  • 批准号:
    10102692
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
  • 批准号:
    10103541
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了