Strange Attractors: Description and Visualization

奇怪的吸引子:描述和可视化

基本信息

  • 批准号:
    0754081
  • 负责人:
  • 金额:
    $ 20.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-11-15 至 2012-10-31
  • 项目状态:
    已结题

项目摘要

This project has two components. One involves outreach to local area high school students and the other is scientific, involving research that benefits Drexel physics undergraduate and graduate students and the field of Nonlinear Dynamics.Outreach component: The PI will develop the capability of making three dimensional models of strange attractors and use these models in presentations to high school students to stimulate an interest in the sciences. These models will be generated on site and left at site. The excitement of working in a young field (nonlinear dynamics and chaos) will be emphasized, as well as the connection with quantum mechanics through the imposition of periodic boundary conditions to create families of strange attractors described by integer quantum numbers, and the connection of some fundamental tools of nonlinear dynamics with similar tools that exist in string theory.Scientific component: The very first step in the analysis of chaotic data is the topological embedding of the data in a space of appropriate dimension. In three dimensions a successful embedding opens up the possibility of determining the topological structure of the attractor using a number of powerful recently developed tools. It is now understood that the topology of the attractor can depend on the embedding, but that the mechanism for generating chaotic behavior so revealed is independent of the embedding. Attractors created by different embeddings are distinguished by quantumnumbers which guarantee that certain periodic boundary conditions are satisfied. The integers are related to a decomposition of the attractor using tools similar to those found in String Theory. These attractors can also be identified by the values of certain newly introduced, easily computed, real measures. Many of these results are valid for strange attractors of dimension greater than three. It is plannned to:a. create a topological test for embeddingsb. determine the spectrum of quantum numbers that distinguish diffeomorphic buttopologically inequivalent attractorsc. describe the duality between embeddings and quantization of strange attractorsd. identify useful connections between Nonlinear Dynamics and String Theory.
该项目有两个组成部分。一个涉及到当地高中生的推广,另一个是科学的,涉及到有利于德雷克塞尔物理本科生和研究生以及非线性动力学领域的研究。推广部分:PI将培养制作奇怪吸引子的三维模型的能力,并将这些模型用于高中生的演讲中,以激发他们对科学的兴趣。这些模型将在现场生成并留在现场。在一个年轻的领域工作的兴奋(非线性动力学和混沌),以及通过施加周期性边界条件来创建由整数量子数描述的奇怪吸引子家族与量子力学的联系,以及非线性动力学的一些基本工具与弦理论中存在的类似工具的联系。科学部分:混沌数据分析的第一步是将数据拓扑嵌入到适当维数的空间中。在三维空间中,一个成功的嵌入开辟了使用一些强大的最近开发的工具来确定吸引子的拓扑结构的可能性。现在可以理解的是,吸引子的拓扑结构可以依赖于嵌入,但产生混沌行为的机制是独立的嵌入。由不同嵌入产生的吸引子由量子数区分,量子数保证满足一定的周期性边界条件。整数与吸引子的分解有关,使用的工具类似于弦论中的工具。这些吸引子也可以通过某些新引入的、容易计算的、真实的测度的值来识别。许多这些结果是有效的奇怪吸引子的维数大于3。计划:A。为embeddingsb创建拓扑测试。确定量子数的频谱,区分双纯拓扑不等价吸引子。描述奇异吸引子d的嵌入和量子化之间的对偶性。找出非线性动力学和弦理论之间的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Gilmore其他文献

Sa1767 A COST-EFFECTIVE INFLAMMATORY BOWEL DISEASE FLARE MANAGEMENT PATHWAY UTILISING RAPID ACCESS INTESTINAL ULTRASOUND AND NURSE-LED TRIAGE TO ACHIEVE HOSPITAL AVOIDANCE WITH HIGH PATIENT SATISFACTION
  • DOI:
    10.1016/s0016-5085(24)01652-4
  • 发表时间:
    2024-05-18
  • 期刊:
  • 影响因子:
  • 作者:
    Richard G. Fernandes;Emi Khoo;Heidi Jensen Harris;Robert Gilmore;Myat Myat Khaing;Jakob Begun;Yoon-Kyo An
  • 通讯作者:
    Yoon-Kyo An
Sa079 EVALUATING THE EFFECTIVENESS OF THE CROHN'S DISEASE EXCLUSION DIET (CDED) + PARTIAL ENTERAL NUTRITION (PEN) AS PRIMARY OR ADJUNCTIVE THERAPY: A 'REAL-WORLD’ TERTIARY <em>IBD EXPERIENCE.</em>
  • DOI:
    10.1016/s0016-5085(21)01692-9
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Claire Dimitroff;Darren Wong;Ashish Srinivasan;Robert Gilmore;Christopher F. Li Wai Suen;Peter De Cruz
  • 通讯作者:
    Peter De Cruz
High Technical Success Rate of Endoscopic Balloon Dilatation Reduces Surgical Requirement for Patients With Stricturing Crohn’s Disease
内窥镜球囊扩张技术的高技术成功率减少了限制性克罗恩病患者的手术需求
  • DOI:
    10.1155/2024/3686618
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emily Lim;Maxter Thai;Yoon;Peter Hendy;M. Alchlaihawi;Rupert Leong;Susan Connor;W. Ng;B. Gu;Lena Thin;Miles Sparrow;Robert Gilmore;Kirstin Taylor;O. Sallis;J. M. Andrews;C. Daker;R. Gearry;G. Wark;S. Ghaly;M. Begun;K. Krishnaprasad;Tianhong Wu;L. Ruddick;Veronika Schreiber;Satomi Okano;G. Radford;Julien Schulberg;Daniel van Langenberg;Jakob Begun
  • 通讯作者:
    Jakob Begun
Relative rotation rates: Fingerprints for strange attractors.
相对旋转速率:奇怪吸引子的指纹。
Group Theory: A Physicist’s Survey
群论:物理学家的调查
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert Gilmore
  • 通讯作者:
    Robert Gilmore

Robert Gilmore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Gilmore', 18)}}的其他基金

Chaos in Higher Dimensions
高维混沌
  • 批准号:
    9987468
  • 财政年份:
    2000
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
XV International Colloquium on Group Theoretical Methods in Physics; Philadelphia, Pennsylvania; October 20-24, 1986
第十五届物理学群理论方法国际学术讨论会;
  • 批准号:
    8611668
  • 财政年份:
    1986
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Fermionic and Bosonic Collective Phenomena in Nuclei and Other Systems (Physics)
原子核和其他系统中的费米子和玻色子集体现象(物理学)
  • 批准号:
    8520634
  • 财政年份:
    1986
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
Twenty Fourth Eastern Theoretical Physics Conference; Philadelphia, Pennsylvania; October 17-18, 1985
第二十四届东方理论物理会议;
  • 批准号:
    8514240
  • 财政年份:
    1985
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Boson Structure and Dynamical Symmetry in Nuclei and Other Systems (Physics)
原子核和其他系统中的玻色子结构和动力学对称性(物理学)
  • 批准号:
    8304868
  • 财政年份:
    1983
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
Boson States in Nuclei and Nucleon Transfer Reactions
原子核和核子转移反应中的玻色子态
  • 批准号:
    8102977
  • 财政年份:
    1981
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant

相似海外基金

Attractors and computational properties of input-driven recurrent neural networks
输入驱动的循环神经网络的吸引子和计算特性
  • 批准号:
    2606311
  • 财政年份:
    2021
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Studentship
Understanding Social Dynamics Through Coevolving Latent Space Networks With Attractors
通过与吸引子共同演化的潜在空间网络来理解社会动态
  • 批准号:
    2120115
  • 财政年份:
    2021
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Dynamics analysis of attractors of large-scale dynamical systems and their relationship with the emergence of swarm intelligence
大规模动力系统吸引子的动力学分析及其与群体智能出现的关系
  • 批准号:
    20K11978
  • 财政年份:
    2020
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability and robustness of attractors of nonlinear infinite-dimensional systems with respect to disturbances
非线性无限维系统吸引子对扰动的稳定性和鲁棒性
  • 批准号:
    405685496
  • 财政年份:
    2019
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Research Grants
Bioinformatics analysis of disease attractors and gene regulatory networks of Alzheimer's disease
阿尔茨海默病疾病吸引子和基因调控网络的生物信息学分析
  • 批准号:
    16K00385
  • 财政年份:
    2016
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in Dynamical Systems: Attractors, Dimension, Lattice Models
动力系统主题:吸引子、维度、晶格模型
  • 批准号:
    1400027
  • 财政年份:
    2014
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
Abrupt changes in the behaviour of hybrid systems in discontinuity induced multiple attractors bifurcations
混合系统在不连续性中行为的突然变化引起了多个吸引子分岔
  • 批准号:
    EP/K001353/1
  • 财政年份:
    2013
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Research Grant
Analysis of cancer attractors on gene expression potentials by gene-environment (GxE) interactions
通过基因-环境 (GxE) 相互作用分析癌症吸引子对基因表达潜力的影响
  • 批准号:
    25330333
  • 财政年份:
    2013
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Strange attractors and chaos
奇怪的吸引子和混乱
  • 批准号:
    432089-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 20.7万
  • 项目类别:
    University Undergraduate Student Research Awards
New theory for transient dynamics in reaction-diffusion systems allowing collapse of attractors
反应扩散系统瞬态动力学的新理论允许吸引子崩溃
  • 批准号:
    24654044
  • 财政年份:
    2012
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了