Chaos in Higher Dimensions
高维混沌
基本信息
- 批准号:9987468
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9987468Gilmore Many physical systems can exhibit chaotic behavior. Examples include: oscillating chemical systems; lasers driven beyond their threshold of stability; fluids flowing in channels; blood flowing inarteries; neurons sending signals; large coupled electrical systems; etc. Chaotic behavior means briefly that the signals generated by such systems are deterministic (predictable), oscillating, andnot periodic. Before we can hope to reach a deep understandingof chaotic behavior, we must be able to classify the different types of chaotic behavior that can exist. Similar problems were faced,andresolved, in the disciplines of Biology (e.g., Linneaus) and Chemistry (e.g., Mendeleef) by scientists who were able to organize a structure for their respective fields. The Principle Investigator has begun the classification scheme for physical systems which can exhibit chaotic behavior by creating a classification scheme for all low dimensional chaotic dynamical systems. He also described in detail how the information necessary to classify such systems can be extractedfrom experimental data (R. Gilmore, Topological analysis of chaotic dynamical systems, Reviews of Modern Physics 70(4), 1455-1530 (1998)). He will extend this classification scheme to higher dimensional dynamical systems under the current grant.
9987468Gilmore许多物理系统可以表现出混沌行为。 示例包括:振荡化学系统;激光器被驱动超过其稳定阈值;流体在通道中流动;血液在动脉中流动;神经元发送信号;大型耦合电系统;等等。混沌行为简单地说,这类系统产生的信号是确定性的(可预测的),振荡的,而不是周期性的。在我们希望深入理解混沌行为之前,我们必须能够对可能存在的不同类型的混沌行为进行分类。 在生物学学科中也面临着类似的问题,并得到了解决(例如,Linneaus)和化学(例如,门捷列夫)的科学家谁能够组织一个结构,为各自的领域。 主要研究者已经开始了物理系统的分类方案,通过为所有低维混沌动力系统创建一个分类方案,可以表现出混沌行为。 他还详细描述了如何从实验数据中提取对这些系统进行分类所必需的信息。Gilmore,Topological analysis of chaotic dynamic systems,Reviews of Modern Physics 70(4),1455 - 1530(1998))。 根据目前的资助,他将把这种分类方法扩展到高维动力系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Gilmore其他文献
Sa1767 A COST-EFFECTIVE INFLAMMATORY BOWEL DISEASE FLARE MANAGEMENT PATHWAY UTILISING RAPID ACCESS INTESTINAL ULTRASOUND AND NURSE-LED TRIAGE TO ACHIEVE HOSPITAL AVOIDANCE WITH HIGH PATIENT SATISFACTION
- DOI:
10.1016/s0016-5085(24)01652-4 - 发表时间:
2024-05-18 - 期刊:
- 影响因子:
- 作者:
Richard G. Fernandes;Emi Khoo;Heidi Jensen Harris;Robert Gilmore;Myat Myat Khaing;Jakob Begun;Yoon-Kyo An - 通讯作者:
Yoon-Kyo An
Sa079 EVALUATING THE EFFECTIVENESS OF THE CROHN'S DISEASE EXCLUSION DIET (CDED) + PARTIAL ENTERAL NUTRITION (PEN) AS PRIMARY OR ADJUNCTIVE THERAPY: A 'REAL-WORLD’ TERTIARY <em>IBD EXPERIENCE.</em>
- DOI:
10.1016/s0016-5085(21)01692-9 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Claire Dimitroff;Darren Wong;Ashish Srinivasan;Robert Gilmore;Christopher F. Li Wai Suen;Peter De Cruz - 通讯作者:
Peter De Cruz
High Technical Success Rate of Endoscopic Balloon Dilatation Reduces Surgical Requirement for Patients With Stricturing Crohn’s Disease
内窥镜球囊扩张技术的高技术成功率减少了限制性克罗恩病患者的手术需求
- DOI:
10.1155/2024/3686618 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Emily Lim;Maxter Thai;Yoon;Peter Hendy;M. Alchlaihawi;Rupert Leong;Susan Connor;W. Ng;B. Gu;Lena Thin;Miles Sparrow;Robert Gilmore;Kirstin Taylor;O. Sallis;J. M. Andrews;C. Daker;R. Gearry;G. Wark;S. Ghaly;M. Begun;K. Krishnaprasad;Tianhong Wu;L. Ruddick;Veronika Schreiber;Satomi Okano;G. Radford;Julien Schulberg;Daniel van Langenberg;Jakob Begun - 通讯作者:
Jakob Begun
Relative rotation rates: Fingerprints for strange attractors.
相对旋转速率:奇怪吸引子的指纹。
- DOI:
10.1103/physreva.41.5717 - 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
N. Tufillaro;H. Solari;Robert Gilmore - 通讯作者:
Robert Gilmore
Group Theory: A Physicist’s Survey
群论:物理学家的调查
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Robert Gilmore - 通讯作者:
Robert Gilmore
Robert Gilmore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Gilmore', 18)}}的其他基金
Strange Attractors: Description and Visualization
奇怪的吸引子:描述和可视化
- 批准号:
0754081 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
XV International Colloquium on Group Theoretical Methods in Physics; Philadelphia, Pennsylvania; October 20-24, 1986
第十五届物理学群理论方法国际学术讨论会;
- 批准号:
8611668 - 财政年份:1986
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Fermionic and Bosonic Collective Phenomena in Nuclei and Other Systems (Physics)
原子核和其他系统中的费米子和玻色子集体现象(物理学)
- 批准号:
8520634 - 财政年份:1986
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Twenty Fourth Eastern Theoretical Physics Conference; Philadelphia, Pennsylvania; October 17-18, 1985
第二十四届东方理论物理会议;
- 批准号:
8514240 - 财政年份:1985
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Boson Structure and Dynamical Symmetry in Nuclei and Other Systems (Physics)
原子核和其他系统中的玻色子结构和动力学对称性(物理学)
- 批准号:
8304868 - 财政年份:1983
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Boson States in Nuclei and Nucleon Transfer Reactions
原子核和核子转移反应中的玻色子态
- 批准号:
8102977 - 财政年份:1981
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Higher Teichmüller理论中若干控制型问题的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
- 批准号:
2205434 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
The Petrov-Penrose classification in higher dimensions - Curvature asymptotics
高维中的 Petrov-Penrose 分类 - 曲率渐近
- 批准号:
561866-2021 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards
The Hilbert Scheme of Points in Higher Dimensions
高维点的希尔伯特方案
- 批准号:
2054553 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Moduli Spaces of Sheaves in Higher Dimensions
高维滑轮模空间
- 批准号:
2442605 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Studentship
Asymptotic analysis of Burgers-type equations with spatial anisotropy in higher dimensions
高维空间各向异性的 Burgers 型方程的渐近分析
- 批准号:
20K22303 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The Fischer KPP equation in higher dimensions
高维 Fischer KPP 方程
- 批准号:
551791-2020 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Legendrian and Contact Topology in Higher Dimensions
职业:高维中的勒让德和接触拓扑
- 批准号:
1942363 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Higher Order Asymptotics for Some Nonstandard Problems in Time Series and in High Dimensions
一些时间序列和高维非标准问题的高阶渐近
- 批准号:
2006475 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant














{{item.name}}会员




