GOALI: Catalytic Hydrogenation Using an Actively Forced Microreactor

GOALI:使用主动强制微反应器进行催化氢化

基本信息

  • 批准号:
    0754397
  • 负责人:
  • 金额:
    $ 36.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-04-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

CBET-0754397KnopfThe PIs plan to look at microchannel reactors utilizing catalyst monoliths for low pressure drop, microchannel heat exchangers for precise temperature control, and active forcing (low-amplitude, low-frequency oscillation) to control gas/liquid distribution, mixing, surface wetting and rates of mass transfer. The active forcing mechanism is scaleable and adaptable to any multiphase reacting system. They will explore underlying mass transfer/fluid flow/ kinetics behavior of the reactors through studies of model gas/liquid reactions, with flow visualization and CFD modeling of the microchannels. The industrial partner, Mezzo Technologies, will provide the micro-heat exchangers and assist in system evolutionary design and fabrication.Intellectual Merit:The PIs plan to study the effects of active forcing via pulsed flow, varying both amplitude and frequency independently in a catalyst monolith reaction system. Based on preliminary work on the systems airwater (mass transfer, flow visualization) and á-methylstyrene hydrogenation (reactor studies), they expect enhanced gas-liquid mass transfer, more precise temperature control (due to the micro-heat exchangers), more uniform flow distribution of both gas and liquid, and faster liquid surface renewal than existing heterogeneous catalytic gas/liquid reactor systems, whether based on structured catalyst packing or not. These fundamental issues will be addressed for both a complex hydrogenation (soybean oil) with multiple reaction paths and one of high molecular weight and viscosity (polystyrene hydrogenation). In both cases, gas-liquid distribution and surface wetting strongly affect observed reaction rates. The combination of improvements made possible by active forcing and better distributor design can result in higher observed rates, less catalyst deactivation, and improved selectivities in these serial reactions, where intermediate products are desired. Possible outcomes will be examined through a combination of kinetics, mass transfer, flow visualization, and catalyst characterization experiments. Moreover, the simplified geometry (relative to chaotic systems such as packed beds or bubble columns) allows a more straightforward modeling for the smooth channels.Broader Merit:C&E News recently reported that the microreactor market is growing to $100 MM. Monolith microreactors are easily scaleable from gram to tonnage production. Ongoing efforts to use microchannel reactors for both rapid catalyst screening and chemicals production have largely ignored catalyzed gas/liquid reactions. This project contributes to microreactor infrastructure by exploring how structured microchannel reactors can best be applied to such processes. Catalyzed gas/liquid (and sometimes solid) reactions of edible oils and macromolecules figure prominently in future biofuels and biorefining processes, and this project addresses such reacting systems in structured microreactors.The project will educate graduate and undergraduate students in microreactor and micro heat exchanger design, and heterogeneous catalysis. Students will work several weeks each year at Mezzo Technologies gaining first-hand experience in microfabrication. Mezzo Technologies will gain valuable expertise incorporating heat exchangers in microreactor systems. Undergraduates will participate through an REU supplement and the LSU Chancellors' Future Leaders in Research Program. Results of this work will be incorporated in both graduate and undergraduate classes taught by the PIs, through teaching modules and through a mini-design project that will be made available publicly. The PIs will also develop a video module on microreactor technology for broader dissemination through existing LSU K-12 STEM programs.
CBET-0754397 Knopf PI计划研究微通道反应器,其利用催化剂整体来实现低压降,微通道热交换器用于精确温度控制,以及主动强制(低振幅,低频振荡)来控制气体/液体分布,混合,表面润湿和传质速率。主动强制机制是可缩放的,并且适用于任何多相反应系统。他们将通过研究模型气体/液体反应,探索反应器的基本传质/流体流动/动力学行为,并对微通道进行流动可视化和CFD建模。工业合作伙伴Mezzo Technologies将提供微型热交换器,并协助系统的改进设计和制造。智力优势:PI计划研究通过脉冲流主动强制的影响,在催化剂整体反应系统中独立改变振幅和频率。根据对空气-水系统的初步工作(传质,流动显示)和α-甲基苯乙烯加氢(反应堆研究),他们期望增强气液传质,更精确的温度控制,(由于微型热交换器),气体和液体的更均匀的流动分布,以及比现有的多相催化气/液反应器系统更快的液体表面更新,无论是否基于结构化催化剂填料。这些基本问题将被解决的复杂氢化(大豆油)与多个反应路径和高分子量和粘度(聚苯乙烯氢化)之一。在这两种情况下,气液分布和表面润湿强烈影响观察到的反应速率。通过主动强制和更好的分布器设计而可能实现的改进的组合可以导致更高的观察速率、更少的催化剂失活和在这些需要中间产物的系列反应中改进的选择性。可能的结果将通过动力学,传质,流动可视化和催化剂表征实验的组合进行检查。此外,简化的几何形状(相对于混沌系统,如填充床或鼓泡塔)允许更直接的建模为smooth channel.Broader优点:C E新闻最近报道,微反应器市场正在增长到1亿美元。正在进行的将微通道反应器用于快速催化剂筛选和化学品生产的努力在很大程度上忽略了催化的气/液反应。该项目有助于微反应器的基础设施,探索如何结构化的微通道反应器可以最好地应用于这样的过程。在未来的生物燃料和生物精炼过程中,食用油和大分子的催化气/液(有时是固体)反应占据着重要地位,本项目将在结构化微反应器中解决此类反应系统。本项目将教育研究生和本科生微反应器和微换热器设计以及多相催化。学生每年将在Mezzo Technologies工作数周,获得微细加工的第一手经验。Mezzo Technologies将获得将热交换器纳入微反应器系统的宝贵专业知识。本科生将通过一个REU补充和LSU校长在研究计划的未来领导者参与。这项工作的结果将通过教学模块和一个将公开提供的小型设计项目纳入PI教授的研究生和本科生课程。PI还将开发一个关于微反应器技术的视频模块,以便通过现有的LSU K-12 STEM计划进行更广泛的传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frederick Knopf其他文献

Frederick Knopf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frederick Knopf', 18)}}的其他基金

Integrating a Cogeneration Facility into Engineering Education
将热电联产设施纳入工程教育
  • 批准号:
    0716303
  • 财政年份:
    2007
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
Integrating a Cogeneration Facility into Engineering Education
将热电联产设施纳入工程教育
  • 批准号:
    0535560
  • 财政年份:
    2006
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
Reforming the Chemical Engineering Curriculum: Manufacturing/Process Dynamics/Process Control Emphasis
改革化学工程课程:制造/过程动力学/过程控制重点
  • 批准号:
    0343002
  • 财政年份:
    2003
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant

相似海外基金

CDS&E: Multiscale Process Intensification of Direct Catalytic Hydrogenation of CO2 to Hydrocarbons via Cooperative Tandem Catalysis
CDS
  • 批准号:
    2245474
  • 财政年份:
    2023
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Standard Grant
3D printed scaffolds for catalytic hydrogenation reactions in flow
用于流动催化氢化反应的 3D 打印支架
  • 批准号:
    2754262
  • 财政年份:
    2022
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Studentship
New Directions for the Synthesis and Degradation of Renewable and Recyclable Plastics Using Homogeneous Catalytic (De)hydrogenation
利用均相催化(脱)加氢合成和降解可再生和可回收塑料的新方向
  • 批准号:
    MR/W007460/1
  • 财政年份:
    2022
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Fellowship
Selective catalytic isomerization and hydrogenation of polyunsaturated molecules
多不饱和分子的选择性催化异构化和氢化
  • 批准号:
    571720-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Alliance Grants
Catalytic transfer hydrogenation of bio-based feedstocks to valuable chemicals and fuels
将生物基原料催化转移加氢转化为有价值的化学品和燃料
  • 批准号:
    2711877
  • 财政年份:
    2022
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Studentship
Development of highly active homogeneous hydrogenation catalytic systems for synthesis of novel organic materials
开发用于合成新型有机材料的高活性均相加氢催化体系
  • 批准号:
    21K20530
  • 财政年份:
    2021
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Catalytic transfer hydrogenation of bio-based feedstocks to valuable chemicals and fuels
将生物基原料催化转移加氢转化为有价值的化学品和燃料
  • 批准号:
    2603663
  • 财政年份:
    2021
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Studentship
CAREER: CAS: Understanding How Catalyst Modification Impacts Performance Thermodynamic and Kinetic Parameters Pertinent to Catalytic Hydrogenation of Polar Carbonyl Bonds
职业:CAS:了解催化剂改性如何影响与极性羰基键催化氢化相关的性能热力学和动力学参数
  • 批准号:
    1945646
  • 财政年份:
    2020
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Continuing Grant
Selective Catalytic Hydrogenation and Functionalization of Polyenes
多烯的选择性催化氢化和官能化
  • 批准号:
    556312-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Alliance Grants
Development of catalytic hydrogenation of carbon dioxide to methanol under low energy conditions directed toward carbon recycling
开发低能条件下二氧化碳催化加氢制甲醇的技术,旨在实现碳回收
  • 批准号:
    19K15614
  • 财政年份:
    2019
  • 资助金额:
    $ 36.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了