Digitized Heat Transfer: A New Paradigm for Thermal Management of Compact Micro Systems

数字化传热:紧凑型微型系统热管理的新范式

基本信息

  • 批准号:
    0756505
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

CBET-0756505, MohseniHeat is an unavoidable byproduct of the normal operation of an electronic device, generated as a result of electrical energy being converted to thermal energy during circuit activities. As the need for fast electronic devices increases, the ability to safely dissipate large amounts of heat from very small areas is key to many of today's cutting edge technologies. To this end, cooling of electronic systems (such as computers, lasers, radars, etc) is becoming a major challenge in the design of next generation of such devices. The proposed investigation will explore the active and on-demand micro actuation and transport of liquid droplets, a process dubbed Digitized Heat Transfer (DHT), for effective thermal management of high power compact systems. In DHT, individual droplets are discretely manipulated. This enables the basic operation in any fluidic device (transporting, mixing, and analyzing) to be performed in simple instructions without the need for moving mechanical parts. In this investigation, the transport of coolant is achieved by modification of surface tension forces on a droplet interface by application of electric forces. Surface tension is a dominant force for liquid handling and actuation at micro scales. The proposed technique is based on three observations: (i) by using metals/alloys that are liquid at room temperature (instead of e.g. water or air) the heat transfer rate of a cooling system can be enhanced significantly, (ii) moving droplets are dominated by an internal recirculation (missing in continuous flows) that will enhance mixing and consequently heat transfer; (iii) electric actuation of a droplet interface is an efficient, low power, and low voltage actuation technique for manipulating liquids at micro scales. Various electric actuation methods will be investigated by computational and theoretical means. DHT will be studied at a fundamental level by identifying the relevant parameters and non-dimensional numbers, and by determining the heat transfer rate for a periodic array of conductive and dielectric droplets of various sizes. It is expected that digitized electrohydrodynamics will offer a viable cooling strategy to achieve the most important objectives of electronic cooling, i.e. minimization of the maximum substrate temperature, reduction of the substrate temperature gradient, and removal of substrate hot spots.In addition to the technical advances in thermal sciences, fluid dynamics, and computational techniques anticipated above, this project provides an application focus that will be of interest to researchers and students working in electrical, chemical, mechanical, and aerospace engineering, as well as physicists, biologists, and medical scientists. Undergraduate research assistants will be sought via supplementary REU support, and can be expected to come from the previously mentioned fields. The PI intends to develop a course in micro scale convective transport and expand his current course on micro and nano fluidics with the addition of both a fabrication and a computational component. The PI's existing multidisciplinary courses will be enriched with results from this work, expanding student exposure to different aspects of micro fluidics. Because of the multidisciplinary aspect of this subject, wide student interest is expected. Storytelling will be reinstated in the classroom as a method of not only science education but also ethics education, history, and community values. A Lilliput Summer Camp is also proposed, enabling local secondary school students to participate in a weeklong educational experience with an emphasis micro scale phenomena.
CBET-0756505,MohseniHeat是电子设备正常运行时不可避免的副产品,是电路活动期间电能转换为热能的结果。随着对快速电子设备需求的增加,从非常小的区域安全地散发大量热量的能力是当今许多尖端技术的关键。为此,电子系统(例如计算机、激光器、雷达等)的冷却正在成为下一代此类设备设计中的主要挑战。拟议的研究将探索液滴的主动和按需微驱动和运输,这一过程被称为数字化传热(DHT),用于高功率紧凑型系统的有效热管理。在DHT中,单独的液滴被离散地操纵。这使得任何流体设备中的基本操作(输送、混合和分析)都能够在简单的指令中执行,而不需要移动机械部件。在这项调查中,冷却剂的运输是通过修改液滴界面上的表面张力通过施加电力。表面张力是微尺度下液体处理和驱动的主导力。所提出的技术是基于三个观察:(i)通过使用在室温下为液体的金属/合金(ii)移动的液滴由内部再循环控制,(在连续流中缺失),这将增强混合并因此增强热传递;(iii)液滴界面的电致动是用于在微尺度上操纵液体的有效、低功率和低电压致动技术。将通过计算和理论手段研究各种电致动方法。通过确定相关参数和无量纲数,并通过确定各种尺寸的导电和介电液滴的周期性阵列的传热速率,将在基本水平上研究DHT。数字化的电流体动力学将提供一种可行的冷却策略,以实现电子冷却的最重要目标,即最大衬底温度的最小化,衬底温度梯度的降低,以及衬底热点的去除。除了上面预期的热科学,流体动力学和计算技术的技术进步之外,该项目提供了一个应用重点,将感兴趣的研究人员和学生在电气,化学,机械和航空航天工程工作,以及物理学家,生物学家和医学科学家。 本科研究助理将通过补充REU支持寻求,并可以预期来自前面提到的领域。PI打算开发一门微尺度对流传输课程,并通过增加制造和计算组件来扩展他目前的微纳米流体课程。PI现有的多学科课程将丰富这项工作的成果,扩大学生接触微流体的不同方面。 由于这一主题的多学科方面,广泛的学生的兴趣是预期的。讲故事将在课堂上恢复,不仅作为科学教育的一种方法,而且作为道德教育、历史和社区价值观的一种方法。还建议举办小人国夏令营,使当地中学生能够参加为期一周的教育体验,重点是微观现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamran Mohseni其他文献

On the Effect of Pipe Boundary Layer Growth on the Formation of a Laminar Vortex Ring Generated by a Piston/Cylinder Arrangement
  • DOI:
    10.1007/s001620100051
  • 发表时间:
    2002-05-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Michael Shusser;Morteza Gharib;Moshe Rosenfeld;Kamran Mohseni
  • 通讯作者:
    Kamran Mohseni
Analyzing deformations in fiber-reinforced soft membranes undergoing axisymmetric inflation: Continuum model and experimental validation
分析轴对称膨胀下纤维增强软膜的变形:连续介质模型与实验验证
  • DOI:
    10.1016/j.euromechsol.2024.105303
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Austin Moss;Kamran Mohseni
  • 通讯作者:
    Kamran Mohseni
A unified model for Digitized Heat Transfer in a microchannel
  • DOI:
    10.1016/j.ijheatmasstransfer.2014.06.018
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Peter Zhang;Kamran Mohseni
  • 通讯作者:
    Kamran Mohseni
Observations on the flow structures and transport in a simulated warm-core ring in the Gulf of Mexico
  • DOI:
    10.1007/s10236-013-0674-5
  • 发表时间:
    2013-12-27
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Doug Lipinski;Kamran Mohseni
  • 通讯作者:
    Kamran Mohseni
A theory on leading-edge vortex stabilization by spanwise flow
  • DOI:
    10.1017/jfm.2023.613
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Xi Xia;Kamran Mohseni
  • 通讯作者:
    Kamran Mohseni

Kamran Mohseni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamran Mohseni', 18)}}的其他基金

Roll stall and the vortex-induced aerodynamic of low-aspect-ratio fliers
低展弦比飞行器的滚转失速和涡流引起的空气动力学
  • 批准号:
    1805776
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NRI: Operating in the Abyss: Bringing Together Humans and Bio-Inpsired Autonomous Vehicles for Maritime Applications
NRI:在深渊中运作:将人类和仿生自动驾驶车辆结合起来用于海事应用
  • 批准号:
    1638034
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Microscale Heat Transfer in Digital Microfluidics
数字微流体中的微尺度传热
  • 批准号:
    1403828
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Observable Divergence Theorem: A new technique for deriving averaged equations for multi-scale shock problems
可观测散度定理:一种推导多尺度冲击问题平均方程的新技术
  • 批准号:
    1134229
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Digitized Heat Transfer: A New Paradigm for Thermal Management of Compact Micro Systems
数字化传热:紧凑型微型系统热管理的新范式
  • 批准号:
    1145009
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Kinematics and Hydrodynamics of Aquatic Jet Bio-Propulsion
水上喷射生物推进的运动学和流体动力学
  • 批准号:
    0854542
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Electrowetting Actuation of Droplets for Cooling of Integrated Circuits
SGER:用于冷却集成电路的液滴电润湿驱动
  • 批准号:
    0540004
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Pulsatile Jet Propulsion for Underwater Robots
合作研究:水下机器人脉动喷射推进
  • 批准号:
    0413300
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR - (NHS+ASE+ECS) - (dmc+sim+int): Loosely Cooperating Micro Air Vehicle Networks for Toxic Plume Characterization
ITR - (NHS ASE ECS) - (dmc sim int):用于有毒羽流表征的松散合作微型飞行器网络
  • 批准号:
    0427947
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

环路热管(Loop Heat Pipe)两相传热机理的理论与实验研究
  • 批准号:
    50676006
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Modelling heat and mass transfer during liquid hydrogen refuelling
模拟液氢加注过程中的传热和传质
  • 批准号:
    2911016
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Heat Transfer for Hydrogen-based Propulsion
氢基推进的传热
  • 批准号:
    2902853
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elucidation of critical heat flux improvement mechanism by evaluation of liquid wicking performance during heating of porous heat transfer surface
通过评估多孔传热表面加热过程中液体芯吸性能来阐明临界热通量改善机制
  • 批准号:
    23K13264
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
  • 批准号:
    EP/Y004973/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Heat transfer to/from a droplet passing through a microchannel under an alternating electric field
在交变电场下通过微通道的液滴之间的传热
  • 批准号:
    23K03708
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the whole picture and heat transfer process of pool boiling phenomenon in liquid hydrogen from atmospheric to critical pressure
阐明液氢从常压到临界压力池沸腾现象的全貌及传热过程
  • 批准号:
    23H01349
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Micro-FloTec: Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption
Micro-FloTec:Microscale 支持先进的流动和传热技术,具有高性能和低功耗的特点
  • 批准号:
    EP/X038319/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了