Collaborative Research: Continuous, Non-Invasive Gait Analysis and Fall-Risk Assessment
合作研究:连续、非侵入性步态分析和跌倒风险评估
基本信息
- 批准号:0756645
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-0756058/CBET-0756645Lockhart/Lach (Collaborative)Falls are the most common cause of elderly individuals being forced to transition from independent living to assisted care. With this transition often comes a decrease in quality of life and always comes a tremendous increase in healthcare costs, which are not sustainable given the forecasted rise in the number of elderly people over the coming decades. Reducing fall rates is therefore an important goal for both individuals and the entire healthcare industry. Therapeutic techniques are being developed to help reduce fall risk, but their success depends both on accurately diagnosing fall prone individuals and on precisely assessing the benefits the techniques provide. Researchers are working towards providing the capabilities by studying the relationship between gait, posture, and falls. Much of this work is done in modern motion capture laboratories, which collect precise gait and posture data but are expensive and immobile, limiting their capabilities for continuous, long-term data collection in natural settings. As a result, gait researchers have had limited success achieving accurate fall risk assessment in diverse patient sets. The proposed project addresses these limitations by developing and validating a custom-designed wearable wireless sensor system that collects accurate and precise gait and posture data continuously and non-invasively in any location. The system will be built on top of the TEMPO (Technology Enabled Medical Precision Observation) system, an accelerometer-based wearable sensor system developed at the University of Virginia that is currently being used with success by medical researchers to monitor and assess tremor in Parkinson?s Disease and Essential Tremor patients. Preliminary results from a pilot study at Virginia Tech show great promise in such a system?s ability to provide high application fidelity, even if the raw motion data is less precise than a laboratory-based motion capture laboratories.
CBET-0756058/CBET-0756645洛克哈特/拉赫(合作)瀑布是老年人被迫从独立生活过渡到辅助护理的最常见原因。这种转变往往伴随着生活质量的下降,并总是伴随着医疗成本的大幅上升,考虑到未来几十年老年人口数量预计将会上升,这是不可持续的。因此,降低跌倒发生率是个人和整个医疗保健行业的一个重要目标。治疗技术正在开发中,以帮助降低跌倒的风险,但它们的成功既取决于准确诊断易摔倒的个人,也取决于准确评估这些技术提供的好处。研究人员正致力于通过研究步态、姿势和跌倒之间的关系来提供这种能力。这项工作的大部分是在现代运动捕捉实验室完成的,这些实验室收集精确的步态和姿势数据,但昂贵且不能移动,限制了他们在自然环境中连续、长期收集数据的能力。因此,步态研究人员在不同的患者组中实现准确的跌倒风险评估的成功有限。拟议的项目通过开发和验证定制设计的可穿戴无线传感器系统来解决这些限制,该系统可以在任何位置连续和非侵入性地收集准确和精确的步态和姿势数据。该系统将建立在TEMPO(科技驱动的医疗精密观测)系统的基础上,TEMPO是弗吉尼亚大学开发的一种基于加速度计的可穿戴传感器系统,目前医学研究人员正在成功地使用该系统来监测和评估帕金森氏症、S病和特发性震颤患者的震颤。弗吉尼亚理工大学试点研究的初步结果显示,在这样的系统中前景广阔-S能够提供高应用保真度,即使原始运动数据不如基于实验室的运动捕捉实验室精确。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Lach其他文献
Making Meaning of “Messy” Data: Creating Clinically Useful Visualizations to Represent the Experience of Cancer Pain in the Home Setting (GP732)
- DOI:
10.1016/j.jpainsymman.2022.04.123 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:
- 作者:
Virginia LeBaron;Nutta Homdee;Nyota Patel;Rachel Bennett;Nadim El-Jaroudi;Yudel Martinez Salgado;Emmanuel Ogunjirin;John Lach - 通讯作者:
John Lach
Alloyed Branch History: Combining Global and Local Branch History for Robust Performance
- DOI:
10.1023/a:1022669325321 - 发表时间:
2003-04-01 - 期刊:
- 影响因子:0.900
- 作者:
Zhijian Lu;John Lach;Mircea R. Stan;Kevin Skadron - 通讯作者:
Kevin Skadron
Understanding the Experience of Cancer Pain From the Perspective of Patients and Family Caregivers to Inform Design of an In-Home Smart Health System: Multimethod Approach (Preprint)
从患者和家庭护理人员的角度了解癌症疼痛的经历,为家庭智能医疗系统的设计提供信息:多方法方法(预印本)
- DOI:
10.2196/preprints.20836 - 发表时间:
2020 - 期刊:
- 影响因子:13.6
- 作者:
Virginia T. LeBaron;Rachel Bennett;Ridwan Alam;L. Blackhall;Kate Gordon;J. Hayes;Nutta Homdee;Randy Jones;Yudel Martinez;Emmanuel Ogunjirin;Tanya Thomas;John Lach - 通讯作者:
John Lach
Automatic, wearable-based, in-field eating detection approaches for public health research: a scoping review
用于公共卫生研究的基于可穿戴设备的自动现场进食检测方法:范围审查
- DOI:
10.1038/s41746-020-0246-2 - 发表时间:
2020-03-13 - 期刊:
- 影响因子:15.100
- 作者:
Brooke M. Bell;Ridwan Alam;Nabil Alshurafa;Edison Thomaz;Abu S. Mondol;Kayla de la Haye;John A. Stankovic;John Lach;Donna Spruijt-Metz - 通讯作者:
Donna Spruijt-Metz
John Lach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Lach', 18)}}的其他基金
2018 Connections in Smart Health Workshop
2018智慧健康连线工作坊
- 批准号:
1841671 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
REU Site: Wireless Technologies for Health Applications
REU 网站:健康应用无线技术
- 批准号:
1461162 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Safety Analysis of Body Sensor Networks
人体传感器网络的安全分析
- 批准号:
1240454 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SHB: Medium: Collaborative Research: Non-Intrusive Multi-Patient Fall-Risk Monitoring in Health Care Facilities
SHB:中:协作研究:医疗保健机构中的非侵入式多患者跌倒风险监测
- 批准号:
1065262 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Enhancing AFO Efficacy through Continuous, Non-Invasive Gait Assessment
通过连续、非侵入性步态评估提高 AFO 功效
- 批准号:
1034071 - 财政年份:2010
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale QoS for Body Sensor Networks
协作研究:身体传感器网络的多尺度 QoS
- 批准号:
0901686 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CI-P: Development of Community Infrastructure for Body Sensor Network Research, Education, and Support
CI-P:身体传感器网络研究、教育和支持的社区基础设施开发
- 批准号:
0855197 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: CT-T: Manufacturing Variability-based Hardware Protection Techniques
合作研究:CT-T:基于制造变异性的硬件保护技术
- 批准号:
0716443 - 财政年份:2007
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SEI: Hierarchical Dependency Graphs for Col-Space Design with Application to Leukocyte Detection and Tracking
SEI:Col 空间设计的分层依赖图及其在白细胞检测和跟踪中的应用
- 批准号:
0612049 - 财政年份:2006
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
EHS: Highly Flexible Multi-Mode Embedded Systems
EHS:高度灵活的多模式嵌入式系统
- 批准号:
0410526 - 财政年份:2004
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: IIBR Instrumentation: A continuous metabolite sensor for lab and field studies
合作研究:IIBR Instrumentation:用于实验室和现场研究的连续代谢物传感器
- 批准号:
2324717 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
- 批准号:
2401415 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
- 批准号:
2247880 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: Building A Cybersecurity Mindset Through Continuous Cross-module Learning
协作研究:通过持续的跨模块学习建立网络安全心态
- 批准号:
2315489 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Building A Cybersecurity Mindset Through Continuous Cross-module Learning
协作研究:通过持续的跨模块学习建立网络安全心态
- 批准号:
2315490 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Continuous Integration Workflows
协作研究:SaTC:核心:中:确保持续集成工作流程的安全
- 批准号:
2247686 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
- 批准号:
2247881 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant