Collaborative Research: Cohomology, Deformations, and Invariants
合作研究:上同调、变形和不变量
基本信息
- 批准号:0800951
- 负责人:
- 金额:$ 15.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Shepler and Witherspoon will develop a theory of deformations expanding that for graded Hecke algebras. They will study deformations of skew group algebras that combine groups of symmetries with algebras of functions. Particular deformations of these algebras arose independently in work by many prominent mathematicians in representation theory and noncommutative geometry, but many open questions remain. Shepler and Witherspoon will answer some of these questions using new tools created by blending methods from invariant theory, combinatorics, homological algebra, and representation theory. They also will solve some basic open problems about the structure and cohomology of Hopf algebras and prove several conjectures on modular reflection groups, invariant theory, and arrangements of hyperplanes. Objects throughout the natural world reveal themselves through their symmetries, for example, crystals, molecules, DNA, and quantum systems. When we deform an object, we alter or even break the symmetry. Remarkably often, we discover new attributes of the object after studying its deformations. Shepler and Witherspoon's research program on graded Hecke algebras and related deformations addresses a variety of mathematical fields and grows from the exploding interest the mathematical community shows in graded Hecke algebras. Hecke algebras are pervasive throughout mathematics, appearing in algebra, geometry, number theory, combinatorics, topology, statistics, harmonic analysis, mathematical physics, special functions, quantum groups, knot theory, and conformal field theory. Shepler and Witherspoon are active in the mathematical community, mentoring students and postdocs, collaborating with international experts, and organizing conferences and workshops. Their research program supports these broader activities.
Shepler和Witherspoon将发展一种变形理论,将其推广到分次Hecke代数。他们将研究结合对称群和函数代数的斜群代数的变形。在表示论和非对易几何中,许多杰出的数学家在工作中独立地出现了这些代数的特殊变形,但仍有许多悬而未决的问题。谢普勒和威瑟斯彭将使用不变量理论、组合学、同调代数和表示理论的混合方法创建的新工具来回答其中一些问题。他们还将解决一些关于Hopf代数的结构和上同调的基本公开问题,并证明关于模反射群、不变理论和超平面排列的几个猜想。自然界中的物体通过它们的对称性来展示自己,例如晶体、分子、DNA和量子系统。当我们使一个物体变形时,我们改变甚至破坏了对称性。值得注意的是,我们经常在研究物体的变形后发现它的新属性。Shepler和Witherspoon关于分次Hecke代数及其相关变形的研究计划涉及各种数学领域,并源于数学界对分次Hecke代数表现出的爆炸性兴趣。Hecke代数在整个数学中无处不在,出现在代数、几何、数论、组合学、拓扑学、统计学、调和分析、数学物理、特殊函数、量子群、纽结理论和共形场论中。谢普勒和威瑟斯彭活跃在数学界,指导学生和博士后,与国际专家合作,组织会议和研讨会。他们的研究计划支持这些更广泛的活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Shepler其他文献
A case of immune reconstitution syndrome complicating progressive multifocal leukoencephalopathy after kidney transplant: Clinical, pathological, and radiographic features
肾移植后免疫重建综合征并发进行性多灶性白质脑病一例:临床、病理和影像学特征
- DOI:
10.1111/tid.13162 - 发表时间:
2019 - 期刊:
- 影响因子:2.6
- 作者:
Eric Jackowiak;Nirav Shah;Huiwen Chen;Ajitesh Ojha;J. Doyle;Anne Shepler;T. Bogdanovich;F. Silveira;G. Haidar - 通讯作者:
G. Haidar
Anne Shepler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Shepler', 18)}}的其他基金
Collaborative Research: Cohomology and Deformations of Algebras
合作研究:代数的上同调和变形
- 批准号:
1101177 - 财政年份:2011
- 资助金额:
$ 15.3万 - 项目类别:
Standard Grant
Combinatorics and Geometry in Representation Theory
表示论中的组合学和几何
- 批准号:
0402819 - 财政年份:2004
- 资助金额:
$ 15.3万 - 项目类别:
Standard Grant
POWRE: Differentials, Singularities and Applications
POWRE:差异、奇点和应用
- 批准号:
0075057 - 财政年份:2000
- 资助金额:
$ 15.3万 - 项目类别:
Standard Grant
MSPRF: Semi-invariants of Finite Reflection Groups
MSPRF:有限反射群的半不变量
- 批准号:
9971099 - 财政年份:1999
- 资助金额:
$ 15.3万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Research on commutative rings via etale cohomology theory
基于etale上同调理论的交换环研究
- 批准号:
23K03077 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on p-adic analytic cohomology of algebraic varieties and application to number theory
代数簇的p-adic解析上同调研究及其在数论中的应用
- 批准号:
22K13899 - 财政年份:2022
- 资助金额:
$ 15.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on algebraic cycles using cohomology and modulus
使用上同调和模研究代数环
- 批准号:
16K05072 - 财政年份:2016
- 资助金额:
$ 15.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on generalized cohomology of flag varieties and Schur functions and their variants
旗簇广义上同调与Schur函数及其变体研究
- 批准号:
15K04876 - 财政年份:2015
- 资助金额:
$ 15.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A research on properties on local cohomology modules from the approach of category theory.
从范畴论的角度研究局部上同调模的性质。
- 批准号:
26400044 - 财政年份:2014
- 资助金额:
$ 15.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Cohomology and Deformations of Algebras
合作研究:代数的上同调和变形
- 批准号:
1101177 - 财政年份:2011
- 资助金额:
$ 15.3万 - 项目类别:
Standard Grant
Collaborative Research: Cohomology and Deformations of Algebras
合作研究:代数的上同调和变形
- 批准号:
1101399 - 财政年份:2011
- 资助金额:
$ 15.3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
- 批准号:
0854760 - 财政年份:2009
- 资助金额:
$ 15.3万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
- 批准号:
0854792 - 财政年份:2009
- 资助金额:
$ 15.3万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
- 批准号:
0853560 - 财政年份:2009
- 资助金额:
$ 15.3万 - 项目类别:
Continuing Grant