POWRE: Differentials, Singularities and Applications
POWRE:差异、奇点和应用
基本信息
- 批准号:0075057
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-01 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This POWRE award supports a Visiting Professorship at the Department of Mathematics at Northeastern University to study differentials of isolated hypersurface singularities. This award will allow the PIto interact with several leading researchers in her field. As part of the human resource development activities she will also sponsor the local graduate student seminar at Northeastern.This research project combines theoretical expertise from cyclic homology and K-theory and computer algebra techniques to gather information about invariants of isolated hypersurface singularities. The most salient invariant of isolated hypersurface singularities is the so-called Tjurina number, or the dimension of the torsion module of differentials. She has identified the torsion module of differentials both as a Hodge-component of cyclic homology and as an ideal quotient. The latter identification has led to an efficient algorithm for computation of the number of generators exploiting Matlis duality in Gorenstein Artin Algebras. As part of her research activities the PI will undertake the following three-part project:1. The structure of isolated singularities:The anticipated outcome of this research will be an upper bound for the number of generators and the length of the module of differentials for 3 dimensional hypersurface singularities. 2. Residues and Duality for isolated hypersurface singularities:The goal will be an explicit description of residues and an investigation of the connection with inverse systems.3. Description of the module of logarithmic differentials and connection with hyperplane/surface arrangements:This part of the project will be computational in nature and will focus on the use and development of algorithms for Groebner basis computations in exterior algebras.This POWRE project is jointly supported by the MPS Office of Multidisciplinary Activities (OMA) and the Division of Mathematical Sciences (DMS).
该POWRE奖支持东北大学数学系客座教授研究孤立超曲面奇点的微分。该奖项将允许pii与她所在领域的几位主要研究人员进行互动。作为人力资源开发活动的一部分,她还将赞助东北大学当地的研究生研讨会。本研究项目结合了循环同调和k理论的理论知识以及计算机代数技术来收集关于孤立超曲面奇点的不变量的信息。孤立超曲面奇点最显著的不变量是所谓的Tjurina数,或微分的扭转模的维数。她将微分的扭转模确定为循环同调的霍奇分量和理想商。后一种识别导致了利用Gorenstein - Artin代数中的矩阵对偶性计算生成器数量的有效算法。作为其研究活动的一部分,PI将承担以下三部分的项目:1。孤立奇点的结构:本研究的预期结果将是三维超曲面奇点的微分模长度和产生点数目的上界。2. 孤立超曲面奇点的残数和对偶性:目标将是残数的显式描述和与逆系统的联系的研究。对数微分模块的描述以及与超平面/曲面排列的联系:项目的这一部分本质上是计算性的,并将重点放在外部代数中Groebner基计算算法的使用和开发上。该power项目由MPS多学科活动办公室(OMA)和数学科学部(DMS)联合支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Shepler其他文献
A case of immune reconstitution syndrome complicating progressive multifocal leukoencephalopathy after kidney transplant: Clinical, pathological, and radiographic features
肾移植后免疫重建综合征并发进行性多灶性白质脑病一例:临床、病理和影像学特征
- DOI:
10.1111/tid.13162 - 发表时间:
2019 - 期刊:
- 影响因子:2.6
- 作者:
Eric Jackowiak;Nirav Shah;Huiwen Chen;Ajitesh Ojha;J. Doyle;Anne Shepler;T. Bogdanovich;F. Silveira;G. Haidar - 通讯作者:
G. Haidar
Anne Shepler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Shepler', 18)}}的其他基金
Collaborative Research: Cohomology and Deformations of Algebras
合作研究:代数的上同调和变形
- 批准号:
1101177 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Cohomology, Deformations, and Invariants
合作研究:上同调、变形和不变量
- 批准号:
0800951 - 财政年份:2008
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Combinatorics and Geometry in Representation Theory
表示论中的组合学和几何
- 批准号:
0402819 - 财政年份:2004
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
MSPRF: Semi-invariants of Finite Reflection Groups
MSPRF:有限反射群的半不变量
- 批准号:
9971099 - 财政年份:1999
- 资助金额:
$ 7.5万 - 项目类别:
Fellowship Award
相似海外基金
Catholic-Protestant Earnings Differentials in Northern Ireland 2011 NISRA BDR Programme
2011 年 NISRA BDR 计划北爱尔兰天主教与新教的收入差异
- 批准号:
ES/X008150/1 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
The Rise in Unmarried Population in Japan: Growing Socioeconomic Differentials in Family Life?
日本未婚人口的增加:家庭生活中社会经济差异的扩大?
- 批准号:
22K01851 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex quartic differentials on surfaces
曲面上的复四次微分
- 批准号:
21K03228 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Education differentials and Population Growth on Pension Systems
教育差异和人口增长对养老金制度的影响
- 批准号:
2492470 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Education differentials and Population Growth on Pension Systems
教育差异和人口增长对养老金制度的影响
- 批准号:
2498861 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Rethinking Vulnerability: Perception, Behaviour, and Power Differentials in Mixed Road-User Interactions
重新思考脆弱性:混合道路使用者交互中的感知、行为和权力差异
- 批准号:
2282280 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Biological Underpinnings of Socioeconomic Differentials in Health and Mortality
健康和死亡率社会经济差异的生物学基础
- 批准号:
10433978 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Firm Wage Differentials in Imperfect Labour Markets: The Role of Market Power and Industrial Relations in Rent Splitting between Workers and Firms
不完善劳动力市场中的企业工资差异:市场力量和劳资关系在工人和企业之间分摊租金中的作用
- 批准号:
402977338 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Research Grants
Biological Underpinnings of Socioeconomic Differentials in Health and Mortality
健康和死亡率社会经济差异的生物学基础
- 批准号:
9981574 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别: