Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
基本信息
- 批准号:0801195
- 负责人:
- 金额:$ 81.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problems to be investigated are in the area of the theory of Lie groups and their discrete subgroups. One of the main objectives is to continue the program of establishing a homogeneous space approach as a powerful tool in number theory. Special attention will be given to the problem of "effectivization" in Oppenheim conjecture and its quantitative generalizations. It is also proposed to continue to study recurrence properties of random walks on Lie groups and their discrete subgroups on homogeneous spaces, manifolds and general metric spaces.The theory of Lie groups and their discrete subgroups is one of the central fields in mathematics. During the last few decades, it was realized that some aspects of the theory can be applied to solve certain problems in number theory and related topics, which could not be tackled by other methods. This proposal is related to rigidity theory that studies phenomena when rather weak data about geometric and mathematical objects determines completely or almost completely the structure of those objects.
要研究的问题属于李群及其离散子群的理论领域。 主要目标之一是继续建立齐质空间方法作为数论中的强大工具。 将特别关注奥本海姆猜想及其定量推广中的“有效化”问题。 并提出继续研究齐次空间、流形和广义度量空间上李群及其离散子群上的随机游走的递推性质。李群及其离散子群理论是数学的中心领域之一。 在过去的几十年中,人们意识到该理论的某些方面可以应用于解决数论和相关主题中的某些问题,而这些问题是其他方法无法解决的。 该提议与刚性理论有关,该理论研究当几何和数学对象的相当弱的数据完全或几乎完全决定这些对象的结构时的现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Margulis其他文献
The linear part of an affine group acting properly discontinuously and leaving a quadratic form invariant
仿射群的线性部分适当地不连续地作用并留下二次形式不变
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Herbert Abels;Gregory Margulis;G. Soifer - 通讯作者:
G. Soifer
Semigroups containing proximal linear maps
包含近端线性映射的半群
- DOI:
10.1007/bf02761637 - 发表时间:
1995 - 期刊:
- 影响因子:1
- 作者:
Herbert Abels;Gregory Margulis;G. Soifer - 通讯作者:
G. Soifer
Gregory Margulis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Margulis', 18)}}的其他基金
Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
1265695 - 财政年份:2013
- 资助金额:
$ 81.02万 - 项目类别:
Continuing Grant
Groups: representations and presentations
团体:陈述和演示
- 批准号:
0801190 - 财政年份:2008
- 资助金额:
$ 81.02万 - 项目类别:
Standard Grant
FRG: Asymptotic and probabilistic methods in geometric group theory
FRG:几何群论中的渐近和概率方法
- 批准号:
0455922 - 财政年份:2005
- 资助金额:
$ 81.02万 - 项目类别:
Continuing Grant
Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their Discrete Subgroups
李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
0244406 - 财政年份:2003
- 资助金额:
$ 81.02万 - 项目类别:
Continuing Grant
Arithmetic, Geometric, and Ergodic Aspects of the Theory of Lie Groups and Their Discrete Subgroups
李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
9800607 - 财政年份:1998
- 资助金额:
$ 81.02万 - 项目类别:
Continuing Grant
Rigidity of Actions of Higher Rank Lattices
高阶格子作用的刚性
- 批准号:
9703770 - 财政年份:1997
- 资助金额:
$ 81.02万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their Discrete Subgroups
数学科学:李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
9424613 - 财政年份:1995
- 资助金额:
$ 81.02万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic, Geometric, and Ergodic Aspects of the Theory of Lie Groups and Their Discrete Subgroups
数学科学:李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
9204270 - 财政年份:1992
- 资助金额:
$ 81.02万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 81.02万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 81.02万 - 项目类别:
Standard Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 81.02万 - 项目类别:
Continuing Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
- 批准号:
2403239 - 财政年份:2024
- 资助金额:
$ 81.02万 - 项目类别:
Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
- 批准号:
2403833 - 财政年份:2024
- 资助金额:
$ 81.02万 - 项目类别:
Standard Grant
Conference: Young Geometric Group Theory XII
会议:年轻几何群理论XII
- 批准号:
2404322 - 财政年份:2024
- 资助金额:
$ 81.02万 - 项目类别:
Standard Grant
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
- 批准号:
2337630 - 财政年份:2024
- 资助金额:
$ 81.02万 - 项目类别:
Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
- 批准号:
DP240101772 - 财政年份:2024
- 资助金额:
$ 81.02万 - 项目类别:
Discovery Projects
Conference: Riverside Workshop on Geometric Group Theory 2024
会议:2024 年河滨几何群论研讨会
- 批准号:
2342119 - 财政年份:2024
- 资助金额:
$ 81.02万 - 项目类别:
Standard Grant
Conference: Frontiers of Geometric Analysis
会议:几何分析前沿
- 批准号:
2347894 - 财政年份:2024
- 资助金额:
$ 81.02万 - 项目类别:
Standard Grant