Rigidity of Actions of Higher Rank Lattices
高阶格子作用的刚性
基本信息
- 批准号:9703770
- 负责人:
- 金额:$ 8.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Actions of connected semi-simple Lie groups and their discrete groups on compact manifolds reflect in many ways the properties of the groups. When the groups are of higher real rank, local rigidity and superrigidity of the groups often contribute to the corresponding properties for actions of the groups. It is conjectured that to some extent, all ergodic, volume-preserving actions of higher rank lattices can be built up from a list of standard actions: (a) actions by isometries on Riemannian manifolds, (2) actions on compact nilmanifolds by automorphisms, and (3) actions on homogeneous spaces by left translations. In particular, Anatole Katok, James Lewis, and Robert Zimmer conjectured that for any higher rank lattice action, there is a smooth invariant connection on an open dense set. The objectives of this research are to establish the local rigidity of the standard actions and to establish the algebraicity of group actions under favorable conditions. The investigator will employ Zimmer's cocycle superrigidity to establish the rigidity properties of the actions in measurable tangential level. Then he will apply dynamical systems techniques to obtain the rigidity properties in topological tangential level. The transition from topological tangential level to smooth level -- which is the key step to his objectives -- will rely on the use of techniques from dynamical systems, Lie theory and representation theory, ergodic theory, harmonic analysis and differential geometry. Another goal of his research is to find smooth invariant connections for the group actions. A group action, when preserving some appropriate structures, is a part of the group of symmetries of the object on which they act. One anticipates that the object is in some sense regular if there are sufficiently many symmetries of the object. One may further imagine that if the symmetries have many relations, there is no way to deform the object and keep those symmetries. The proposed research takes the objects to be manifolds. T he researcher investigates essentially two problems. The first is to find the structure for the symmetries when there are many symmetries. The second is to identify the symmetries for which the manifolds cannot be deformed. The significance is to provide unified approaches to the research of the rigidity of group actions, develop new methods to tackle the often encountered problems in this field of research, and ultimately establish that under certain conditions, a higher rank group action must be a part of the group of symmetries for a structure (so-called connection).
连通半单李群及其离散群在紧致流形上的作用在许多方面反映了群的性质。当群具有较高的实数阶时,群的局部刚性和超刚性往往有助于群的作用的相应性质。我们猜想,在某种程度上,高阶格的所有遍历保体积作用都可以由一系列标准作用构成:(A)黎曼流形上的等距作用,(2)紧致零流形上的自同构作用,以及(3)齐次空间上的左移作用。特别是,Anatole Katok,James Lewis和Robert Zimmer猜想,对于任何高秩格作用,在开的稠密集上存在光滑的不变联系。本研究的目的是建立标准行动的局部刚性,并在有利条件下建立群体行动的代数性。研究人员将利用齐默尔的上循环超刚性来建立作用在可测切向水平上的刚性性质。然后,他将应用动力系统技术来获得拓扑切向层次上的刚性性质。从拓扑切向光滑层的过渡--这是实现他的目标的关键一步--将依赖于动力系统、李理论和表示理论、遍历理论、调和分析和微分几何中的技术的使用。他研究的另一个目标是找到群体行动的光滑不变联系。当保持适当的结构时,群作用是作用于其上的对象的对称性群的一部分。如果该对象有足够多的对称性,人们就认为该对象在某种意义上是正则的。人们可以进一步想象,如果对称性有许多关系,就没有办法使物体变形并保持这些对称性。所提出的研究将对象视为流形。研究者主要研究了两个问题。第一个问题是当对称性较多时,寻找对称性的结构。第二种是确定流形不能变形的对称性。其意义在于为群体作用的刚性研究提供统一的途径,发展新的方法来解决这一研究领域中经常遇到的问题,并最终确立在一定条件下,较高等级的群体作用一定是结构的对称性群(所谓的联络)的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Margulis其他文献
The linear part of an affine group acting properly discontinuously and leaving a quadratic form invariant
仿射群的线性部分适当地不连续地作用并留下二次形式不变
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Herbert Abels;Gregory Margulis;G. Soifer - 通讯作者:
G. Soifer
Semigroups containing proximal linear maps
包含近端线性映射的半群
- DOI:
10.1007/bf02761637 - 发表时间:
1995 - 期刊:
- 影响因子:1
- 作者:
Herbert Abels;Gregory Margulis;G. Soifer - 通讯作者:
G. Soifer
Gregory Margulis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Margulis', 18)}}的其他基金
Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
1265695 - 财政年份:2013
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Groups: representations and presentations
团体:陈述和演示
- 批准号:
0801190 - 财政年份:2008
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
0801195 - 财政年份:2008
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
FRG: Asymptotic and probabilistic methods in geometric group theory
FRG:几何群论中的渐近和概率方法
- 批准号:
0455922 - 财政年份:2005
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their Discrete Subgroups
李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
0244406 - 财政年份:2003
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Arithmetic, Geometric, and Ergodic Aspects of the Theory of Lie Groups and Their Discrete Subgroups
李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
9800607 - 财政年份:1998
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their Discrete Subgroups
数学科学:李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
9424613 - 财政年份:1995
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic, Geometric, and Ergodic Aspects of the Theory of Lie Groups and Their Discrete Subgroups
数学科学:李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
9204270 - 财政年份:1992
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
相似海外基金
Combinatorial Objects and Actions in Higher Dimensional Settings
高维设置中的组合对象和动作
- 批准号:
2247089 - 财政年份:2023
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
CAREER: Renormalization and higher rank parabolic actions
职业生涯:重整化和更高阶的抛物线作用
- 批准号:
2143133 - 财政年份:2022
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Self-similar actions and higher-rank graphs
自相似动作和高阶图
- 批准号:
550332-2020 - 财政年份:2020
- 资助金额:
$ 8.67万 - 项目类别:
University Undergraduate Student Research Awards
Rigidity Phenomena of Higher Rank Actions
高阶动作的刚性现象
- 批准号:
1501095 - 财政年份:2015
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Circle actions, positive scalar curvature and higher genera
圆动作、正标量曲率和更高的属
- 批准号:
258606408 - 财政年份:2014
- 资助金额:
$ 8.67万 - 项目类别:
Research Grants
Rigidity Phenomena for Higher Rank Abelian Actions
高阶阿贝尔动作的刚性现象
- 批准号:
0411769 - 财政年份:2003
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Rigidity Phenomena for Higher Rank Abelian Actions
高阶阿贝尔动作的刚性现象
- 批准号:
0140513 - 财政年份:2002
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Molecular pharmacological study on the roles of the central noradreneric neurosis in the higher central actions of morphine
中枢去甲肾上腺素神经症在吗啡高级中枢作用中作用的分子药理学研究
- 批准号:
14370743 - 财政年份:2002
- 资助金额:
$ 8.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dynamics of Semi-Dispersing Billiards; Geometry of Operator Symmetric Spaces; Rigidity of Higher-Rank Anosov Actions
半分散台球动力学;
- 批准号:
9971587 - 财政年份:1999
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Life Course and Role Actions of Higher Civil Servants of Japan in Syowa Era.
昭和时代日本高级公务员的生命历程和角色行动。
- 批准号:
06610193 - 财政年份:1994
- 资助金额:
$ 8.67万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




