Algebraic Knot Homology
代数结同调
基本信息
- 批准号:0801939
- 负责人:
- 金额:$ 10.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2009-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal is to construct knot invariants using algebraic geometry.Recall that to each pair of a Lie algebra and a representation one can associate a Reshetikhin-Turaev invariant of knots. For example, the Jones polynomial is one such invariant. In the case of the general linear group and the standard representation the PI and Joel Kamnitzer categorify these invariants, meaning that to each knot they assign a (bi-graded) homology group whose Euler characteristic is the original invariant. This is analogous to the way (singular) homology of topological spaces "categorifies" the Euler characteristic. Their construction involves studying the (derived) category of coherent sheaves on certain flag-like varieties. All this parallels the earlier pioneering work of Khovanov and Rozansky who discovered such categorifications using algebraic and combinatorial constructions. Using the algebraic geometric approach the investigator and his colleagues have a conjecture for how to categorify some of the remaining Reshetikhin-Turaev invariants. Checking, for instance, invariance under Reidemeister move 2 involves proving that certain integral transforms between (derived) categories are equivalences.The existence of such equivalences, which include Seidel-Thomas spherical twists, is a lively area of research which is interesting in itself.The simplest example of a knot is obtained by taking a tangled-up shoe lace and glueing the ends together. A fundamental question in low-dimensional topology is to determine when two such knots are different (you are allowed to move the knots around without cutting them). One way to do this is to assign a number (an invariant) to each knot so that if two knots are assigned different numbers then they must be different. How to assign such numbers is a deep problem which is related to various areas of mathematics in surprising ways. For example, the Reshetikhin-Turaev invariants are obtained from representation theory (which is the study of matrices). There are also constructions of such invariants using algebra and others that are inspired by physics and string theory. The proposed research suggests yet another approach using algebraic geometry (which is the study of systems of polynomial equations). This approach may extend, unify and shed more light on the other constructions.
该提议是使用代数几何构造结不变量。回想一下,对于每一对李代数和表示,我们可以将结的 Reshetikhin-Turaev 不变量关联起来。例如,琼斯多项式就是这样的不变量之一。在一般线性群和标准表示的情况下,PI 和 Joel Kamnitzer 对这些不变量进行分类,这意味着他们为每个结分配一个(双级)同源群,其欧拉特征是原始不变量。这类似于拓扑空间的(奇异)同源“分类”欧拉特征的方式。它们的构建涉及研究某些旗状品种上连贯滑轮的(派生)类别。所有这些都与霍瓦诺夫和罗赞斯基早期的开创性工作相似,他们使用代数和组合结构发现了这种分类。使用代数几何方法,研究者和他的同事对如何对剩余的一些 Reshetikhin-Turaev 不变量进行分类进行了猜想。例如,检查 Reidemeister move 2 下的不变性涉及证明(派生)类别之间的某些积分变换是等价的。这种等价的存在,包括 Seidel-Thomas 球形扭曲,是一个活跃的研究领域,本身就很有趣。最简单的结的例子是通过取一根缠结的鞋带并将两端粘在一起来获得。低维拓扑中的一个基本问题是确定两个这样的结何时不同(允许您移动结而不切断它们)。一种方法是为每个结分配一个数字(不变量),这样如果两个结分配了不同的数字,那么它们一定是不同的。如何分配这些数字是一个深刻的问题,它以令人惊讶的方式与数学的各个领域相关。例如,Reshetikhin-Turaev 不变量是从表示论(矩阵研究)获得的。受物理学和弦理论的启发,还可以使用代数和其他方法构造此类不变量。拟议的研究提出了另一种使用代数几何的方法(即多项式方程组的研究)。这种方法可以扩展、统一并进一步阐明其他结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sabin Cautis其他文献
Quantum K-theoretic geometric Satake: the $\operatorname{SL}_{n}$ case
量子 K 理论几何佐竹:$operatorname{SL}_{n}$ 情况
- DOI:
10.1112/s0010437x17007564 - 发表时间:
2015 - 期刊:
- 影响因子:1.8
- 作者:
Sabin Cautis;J. Kamnitzer - 通讯作者:
J. Kamnitzer
Canonical bases for Coulomb branches of 4d $\mathcal{N}=2$ gauge theories
4d $mathcal{N}=2$ 规范理论库仑分支的规范基
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sabin Cautis;H. Williams - 通讯作者:
H. Williams
Loop realizations of quantum affine algebras
量子仿射代数的循环实现
- DOI:
10.1063/1.4765051 - 发表时间:
2011 - 期刊:
- 影响因子:1.3
- 作者:
Sabin Cautis;Anthony M. Licata - 通讯作者:
Anthony M. Licata
Braid group actions via categorified Heisenberg complexes
通过分类海森堡复合体编织群体行动
- DOI:
10.1112/s0010437x13007367 - 发表时间:
2012 - 期刊:
- 影响因子:1.8
- 作者:
Sabin Cautis;Anthony M. Licata;Joshua Sussan - 通讯作者:
Joshua Sussan
Knot homology via derived categories of coherent sheaves IV, coloured links
通过连贯滑轮 IV 的派生类别,彩色链接结同源
- DOI:
10.4171/qt/93 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sabin Cautis;J. Kamnitzer - 通讯作者:
J. Kamnitzer
Sabin Cautis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sabin Cautis', 18)}}的其他基金
Categorification and 3-Manifold Invariants in Algebraic Geometry
代数几何中的分类和 3 流形不变量
- 批准号:
1332847 - 财政年份:2012
- 资助金额:
$ 10.11万 - 项目类别:
Standard Grant
Categorification and 3-Manifold Invariants in Algebraic Geometry
代数几何中的分类和 3 流形不变量
- 批准号:
1101439 - 财政年份:2011
- 资助金额:
$ 10.11万 - 项目类别:
Standard Grant
相似海外基金
Knot Homology and Moduli of Sheaves
绳轮的结同源性和模量
- 批准号:
2200798 - 财政年份:2022
- 资助金额:
$ 10.11万 - 项目类别:
Continuing Grant
gl(1|1)-quantum invariant of trivalent graphs and knot Floer homology
gl(1|1)-三价图的量子不变量和结Floer同源性
- 批准号:
20K14304 - 财政年份:2020
- 资助金额:
$ 10.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analyzing the topological properties of the knot contact homology by use of the ghost characters of knots
利用结的鬼特征分析结接触同调的拓扑性质
- 批准号:
20K03619 - 财政年份:2020
- 资助金额:
$ 10.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three-Dimensional Manifolds, Heegaard Floer Homology and Knot Theory
三维流形、Heegaard Floer 同调和纽结理论
- 批准号:
1904628 - 财政年份:2019
- 资助金额:
$ 10.11万 - 项目类别:
Continuing Grant
Heegaard Floer homology: algebraic curves, knot genera, and double null-concordance
Heegaard Floer 同调:代数曲线、结属和双零一致性
- 批准号:
1505586 - 财政年份:2015
- 资助金额:
$ 10.11万 - 项目类别:
Standard Grant
BPS states from number theory to knot homology
BPS 从数论到结同调性
- 批准号:
SAPIN-2014-00030 - 财政年份:2015
- 资助金额:
$ 10.11万 - 项目类别:
Subatomic Physics Envelope - Individual
On the left-orientability of the fundamental group of homology spheres obtained as twofold covers of the 3-sphere branched over a knot.
关于同调球体基本群的左定向性,作为在结上分支的 3 球体的双重覆盖而获得。
- 批准号:
481788-2015 - 财政年份:2015
- 资助金额:
$ 10.11万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Representation theoretical analysis of the knot contact homology
结接触同源性的表示理论分析
- 批准号:
26800046 - 财政年份:2014
- 资助金额:
$ 10.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
BPS states from number theory to knot homology
BPS 从数论到结同调性
- 批准号:
SAPIN-2014-00030 - 财政年份:2014
- 资助金额:
$ 10.11万 - 项目类别:
Subatomic Physics Envelope - Individual