Non-linear equations and Schroedinger operators
非线性方程和薛定谔算子
基本信息
- 批准号:0803120
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project targets basic questions in mathematical physics and the theory of partial differential equations. It involves a rigorous study of properties of solutions of certain nonlinear differential equations (e.g., the decay properties of dispersion managed solitons, spectral properties of matrix Schrödinger operators, and properties of Coulomb matter under extreme densities) that correspond to significant physical phenomena. The methods used and developed in this research are a combination of analytic techniques from differential equations, analysis, harmonic analysis, the calculus of variations, functional analysis, and spectral theory. The major part of this research project is interdisciplinary. It bridges pure mathematics and applied sciences such as engineering and physics. For example, dispersion management solitons are by now widely used in high-speed internet cables. Despite this commercial success only very little is known rigorously about the decay of these solitons. Engineers care about the decay, because it effectively determines the bandwidth (hence the speed) of optical fiber communication devices. The research will lead to a better rigorous understanding of these solitons. Not only will the new mathematical methods developed in the project feed back into the analytic toolbox available for mathematicians, but it will also put the often ad-hoc formal calculations of engineers on a firm basis. This could lead to deepened insights into the mathematical foundations of dispersive equations, in the process providing engineers with both new tools for exploring the nature of these systems and increased potential for improving existing fiber optics systems. The project will extend and strengthen existing collaborations with researchers in the USA, Europe, and Korea. Part of the grant will be used for supporting and training a graduate student.
该项目的目标是数学物理和偏微分方程理论中的基本问题。它涉及对某些非线性微分方程(例如,色散管理孤子的衰减特性、矩阵薛定谔算子的光谱特性以及极端密度下库仑物质的特性)。在这项研究中使用和开发的方法是从微分方程,分析,谐波分析,变分法,泛函分析和谱理论的分析技术的组合。该研究项目的主要部分是跨学科的。它连接了纯数学和应用科学,如工程和物理。例如,色散管理孤子现在广泛用于高速互联网电缆。尽管在商业上取得了成功,但人们对这些孤子的衰变知之甚少。工程师关心衰减,因为它有效地决定了光纤通信设备的带宽(因此速度)。这些研究将有助于更好地理解这些孤子。该项目中开发的新数学方法不仅将反馈到数学家可用的分析工具箱中,而且还将为工程师经常进行的临时正式计算奠定坚实的基础。这可能会加深对色散方程数学基础的了解,在此过程中为工程师提供了探索这些系统性质的新工具,并增加了改进现有光纤系统的潜力。该项目将扩大和加强与美国,欧洲和韩国研究人员的现有合作。部分赠款将用于支持和培训一名研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vadim Zharnitsky其他文献
High Frequency Perturbation of Cnoidal Waves in KdV
KdV 中的余弦波高频扰动
- DOI:
10.1137/120868220 - 发表时间:
2011 - 期刊:
- 影响因子:2
- 作者:
M. B. Erdogan;N. Tzirakis;Vadim Zharnitsky - 通讯作者:
Vadim Zharnitsky
Whispering gallery orbits in Sinai oscillator trap
- DOI:
10.1016/j.physd.2021.132960 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Ariel Lerman;Vadim Zharnitsky - 通讯作者:
Vadim Zharnitsky
Vadim Zharnitsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vadim Zharnitsky', 18)}}的其他基金
Quasilinear evolution and periodic orbits in Hamiltonian systems
哈密顿系统中的拟线性演化和周期轨道
- 批准号:
0807897 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Exterior Differential System Approach to Periodic Orbits in Hamiltonian Systems
合作研究:哈密顿系统中周期轨道的外微分系统方法
- 批准号:
0505216 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627721 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Fellowship Award
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
全纯Mobius变换及其在相对论和信号分析中的应用
- 批准号:11071230
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
枢纽港选址及相关问题的算法设计
- 批准号:71001062
- 批准年份:2010
- 资助金额:17.6 万元
- 项目类别:青年科学基金项目
MIMO电磁探测技术与成像方法研究
- 批准号:40774055
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
统计过程控制图的设计理论及其应用
- 批准号:10771107
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Machine Learning techniques applied to non-linear differential equations
应用于非线性微分方程的机器学习技术
- 批准号:
572217-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
- 批准号:
EP/W004070/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Soliton Dynamics for Non-Linear Wave Equations
非线性波动方程的孤子动力学
- 批准号:
1954455 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
- 批准号:
1956092 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Building a Theory of Regular Structures for Non-Autonomous and Quasi-Linear Rough Evolution Equations, and Applying the Theory to Forest Kinematic Ecosystems
建立非自治和拟线性粗糙演化方程的规则结构理论,并将该理论应用于森林运动生态系统
- 批准号:
19K14555 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of Non-linear Equations on Graphs
图上的非线性方程分析
- 批准号:
544940-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Singularity formations in non linear partial differential equations
非线性偏微分方程中的奇异性形成
- 批准号:
2278691 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Analysis of Non-Linear Partial Differential Equations in Free Boundary Fluid Dynamics and Kinetic Theory
自由边界流体动力学和运动理论中非线性偏微分方程的分析
- 批准号:
1764177 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Structure of the solutions to non-linear hyperbolic partial differential equations derived from astrophysics
天体物理学非线性双曲偏微分方程解的结构
- 批准号:
18K03371 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of fully non-linear geometric problems and differential equations
完全非线性几何问题和微分方程的分析
- 批准号:
DE180100110 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




