Quasilinear evolution and periodic orbits in Hamiltonian systems
哈密顿系统中的拟线性演化和周期轨道
基本信息
- 批准号:0807897
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-15 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This study will improve the understanding of finite and infinite dimensional Hamiltonian systems. A somewhat counter-intuitive quasilinear evolution in nonlinear dispersive wave equations of Hamiltonian type will be investigated and a general criterion of quasilinear behavior developed. The study will begin with specific equations such as the Fermi-Pasta-Ulam system, the Korteweg-ed Vries equation, the Majda-McLaughlin-Tabak model, etc. The nonlinear dynamics becomes linear for high frequency initial data because of a subtle averaging effect due to the dispersion. Besides purely nonlinear dynamics interest, understanding the quasilinear phenomenon is important for engineering systems design, since designing linear systems is easier for a number of reasons. A second area of study is the structure of the set of periodic orbits in Hamiltonian systems of billiard type. The approach is based on the methods of geometric control theory and exterior differential systems. It is expected that analyticity of the large (two parameter) families of periodic orbits will be proved. While being an important problem in theoretical dynamics, the structure of the set of periodic orbits is of great value to other areas of science. In particular, zero probability occurrence of periodic orbits implies high accuracy of Weyl's asymptotics for eigenvalues in the Dirichlet problem. In physics, the structure of the set of periodic orbits plays an important role in the study of quantum chaos and in optical microcavities. Optical communication systems provide the most effective way of data transmission over long distances. The information is usually transmitted by light pulses of short duration. In an ideal world, the incoming data stream would appear undistorted at the other end of the transmission line, so the information would not be corrupted. In reality, two major effects distort the light pulses: dispersion and nonlinearity. Dispersion characterizes how much the speed of the wave depends on the frequency, and nonlinearity forces larger amplitude waves to move differently from the smaller amplitude ones. The distortion due to nonlineariy is especially undesirable. Recently, optical system engineers have discovered the remarkable fact that by packing pulses more and more tightly, nonlinear effects become smaller. In earlier work this ?quasilinear? phenomenon was explained for a simple model problem by demonstrating that it occurs under certain precisely formulated conditions. One part of the proposed research aims to develop general criteria of quasilinear behavior in other important systems, such as shallow water dynamics, solid state physics, and water waves. The second part of the project deals with the study of periodic orbits in mechanics. Periodic orbits produce recurrent behavior and their study is of great importance for basic systems, such as the classical billiard problem. Here one should think of an oval cavity in which a light ray (or a point mass) travels along straight lines, suffering reflections at the boundary. It is believed that the probability is zero that a given ray will produce a closed (i.e., periodic) trajectory. This issue has deep connections to other fields, and it is proposed to understand when this probability is zero and when it is positive.
这一研究将提高对有限维和无限维哈密顿系统的理解。本文研究了Hamilton型非线性色散波方程的一个有点违反直觉的拟线性演化,并给出了拟线性行为的一般判据。研究将开始与特定的方程,如费米-帕斯塔-乌拉姆系统,Korteweg-ed弗里斯方程,Majda-McLaughlin-Tabak模型等的非线性动力学成为线性的高频初始数据,因为一个微妙的平均效应,由于分散。 除了纯粹的非线性动力学的兴趣,了解准线性现象是重要的工程系统设计,因为设计线性系统更容易的原因有很多。 第二个研究领域是台球型哈密顿系统的周期轨道集的结构。该方法是基于几何控制理论和外微分系统的方法。 预计将证明周期轨道的大(两个参数)家庭的解析性。作为理论动力学中的一个重要问题,周期轨道集的结构对其他科学领域具有重要价值。特别是,零概率出现的周期轨道意味着高精度的外尔渐近的特征值的狄利克雷问题。 在物理学中,周期轨道集的结构在量子混沌和光学微腔的研究中起着重要的作用。光通信系统提供了长距离数据传输的最有效方式。信息通常是通过短持续时间的光脉冲传输的。 在理想情况下,输入的数据流在传输线的另一端不会失真,因此信息不会被破坏。实际上,两个主要的效应使光脉冲失真:色散和非线性。 色散表征了波的速度在多大程度上取决于频率,而非线性则迫使振幅较大的波与振幅较小的波以不同的方式运动。由于非线性引起的失真是特别不希望的。最近,光学系统工程师们发现了一个显著的事实,即通过越来越紧密地包装脉冲,非线性效应变得越来越小。 在早期的工作中,这?拟线性?现象解释了一个简单的模型问题,证明它发生在某些精确制定的条件下。拟议的研究的一部分,旨在开发在其他重要的系统,如浅水动力学,固态物理和水波准线性行为的一般标准。该项目的第二部分涉及力学中周期轨道的研究。 周期轨道产生常返性,对它的研究对于基本系统(如经典台球问题)具有重要意义。这里我们可以想象一个椭圆形的空腔,光线(或质点)在其中沿着直线传播,在边界处受到反射。 相信给定射线将产生闭合(即,周期性的)轨迹。这个问题与其他领域有着深刻的联系,我们建议了解这种概率何时为零,何时为正。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vadim Zharnitsky其他文献
High Frequency Perturbation of Cnoidal Waves in KdV
KdV 中的余弦波高频扰动
- DOI:
10.1137/120868220 - 发表时间:
2011 - 期刊:
- 影响因子:2
- 作者:
M. B. Erdogan;N. Tzirakis;Vadim Zharnitsky - 通讯作者:
Vadim Zharnitsky
Whispering gallery orbits in Sinai oscillator trap
- DOI:
10.1016/j.physd.2021.132960 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Ariel Lerman;Vadim Zharnitsky - 通讯作者:
Vadim Zharnitsky
Vadim Zharnitsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vadim Zharnitsky', 18)}}的其他基金
Non-linear equations and Schroedinger operators
非线性方程和薛定谔算子
- 批准号:
0803120 - 财政年份:2008
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Collaborative Research: Exterior Differential System Approach to Periodic Orbits in Hamiltonian Systems
合作研究:哈密顿系统中周期轨道的外微分系统方法
- 批准号:
0505216 - 财政年份:2005
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627721 - 财政年份:1996
- 资助金额:
$ 16.2万 - 项目类别:
Fellowship Award
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
- 批准号:19ZR1415200
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
研究蝙蝠冬眠現象的分子进化机制
- 批准号:31100273
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于microRNA前体性质的microRNA演化研究
- 批准号:31100951
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
星系演化背景下的年轻超大质量星团:悬而未决的难题
- 批准号:11073001
- 批准年份:2010
- 资助金额:50.0 万元
- 项目类别:面上项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
- 批准号:11043005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
基于传孢类型藓类植物系统的修订
- 批准号:30970188
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Periodic Phenomena and Evolution in Cataclysmic Binaries
灾难性双星的周期性现象和演化
- 批准号:
2205783 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Periodic Phenomena and the Evolution of Cataclysmic Variable Binary Stars
周期性现象与灾变变双星的演化
- 批准号:
1615456 - 财政年份:2016
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Spin Wave Excitations in Periodic Nanostructures: Evolution from Periodical Perturbations to Magnonic Crystals
周期性纳米结构中的自旋波激发:从周期性扰动到磁振子晶体的演化
- 批准号:
240276519 - 财政年份:2013
- 资助金额:
$ 16.2万 - 项目类别:
Research Grants
The evolution of periodic ventilation in insects
昆虫周期性通风的进化
- 批准号:
DP0879605 - 财政年份:2008
- 资助金额:
$ 16.2万 - 项目类别:
Discovery Projects
Analysis on the fractal structure of quasi periodic orbits for nonlinear evolution equations
非线性演化方程准周期轨道的分形结构分析
- 批准号:
16540164 - 财政年份:2004
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular etiology of familial Mediterranean fever
家族性地中海热的分子病因学
- 批准号:
7162083 - 财政年份:2003
- 资助金额:
$ 16.2万 - 项目类别:
The global behavior of solutions of evolution equations in noncylindrical domain with time-moving boundaries
时动边界非圆柱域演化方程解的全局行为
- 批准号:
15540213 - 财政年份:2003
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On existence of solutions for differential equations and their properties via functional analysis
通过泛函分析论微分方程解的存在性及其性质
- 批准号:
13640158 - 财政年份:2001
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the Behavior of Solutions Evolution Equations in Time-Almost Periodic Noncylindrical Domains
时间类周期非圆柱域中解演化方程的行为研究
- 批准号:
12640220 - 财政年份:2000
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of dimensional and recursive properties for almost periodic solutions of nonlinear partial differential equations
非线性偏微分方程几乎周期解的维数和递归性质分析
- 批准号:
10640178 - 财政年份:1998
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




