Applications and Refinements of Floer Homology
Floer同调性的应用和改进
基本信息
- 批准号:0803465
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2008-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is on Floer homology and its applications to low-dimensional topology. Floer homology is an infinite dimensional version of Morse theory which has been used to construct various invariants of knots, 3-manifolds, 4-manifolds, etc. In turn, these invariants can answer subtle questions about the respective topological objects. One source of invariants with numerous topological applications is Heegaard Floer theory. For example, the Heegaard Floer invariant for knots (called knot Floer homology) is able to detect the genus of a knot. Originally, all the Heegaard Floer invariants were defined in terms of pseudo-holomorphic curves in symmetric products. Recently, knot Floer homology has been given several combinatorial descriptions. One focus of this project is to find combinatorial descriptions for the Heegaard Floer three- and four-manifold invariants as well. In other directions, the PI will work on finding connections between knot Floer homology and other knot invariants, such as the Khovanov-Rozansky homologies; intepreting the Khovanov-Rozansky homologies geometrically; developing Floer homotopy theory; and constructing new Floer-theoretic invariants of three-manifolds using moduli spaces of flat connections.Floer homology plays a central role in the construction of topological quantum field theories. These are toy models used in Mathematical Physics to develop quantum theories about the universe. They are also of interest to topologists, who study the possible shapes of space in various dimensions. An important problem is the classification of these shapes, and this is particularly difficult in four dimensions. Floer homology and the associated invariants are some of the most useful tools for detecting properties of four-dimensional shapes. Because our macroscopic space-time has four dimensions, this is an essential input for quantum physicists and cosmologists looking for geometric models for the universe. Furthermore, recently Floer homology has found surprising applications in biology, more precisely in the analysis of DNA knotting.
本文主要研究Floer同调及其在低维拓扑中的应用。Floer同调是莫尔斯理论的一个无限维版本,它已被用来构造各种不变量的结,3流形,4流形等反过来,这些不变量可以回答微妙的问题,有关各自的拓扑对象。一个来源的不变量与众多的拓扑应用是Heegaard Floer理论。例如,纽结的Heegaard Floer不变量(称为纽结Floer同源性)能够检测纽结的属。最初,所有的Heegaard Floer不变量都是用对称乘积中的伪全纯曲线定义的。最近,纽结-弗洛尔同调被给出了几种组合描述。这个项目的一个重点是找到组合描述的Heegaard Floer三,四流形不变量。在其他方面,PI将致力于寻找结Floer同调和其他结不变量之间的联系,如Khovanov-Rozansky同调;几何解释Khovanov-Rozansky同调;发展Floer同伦理论;并使用平坦连接的模空间构造新的三流形的Floer理论不变量。Floer同调在拓扑量子场论的构造中起着核心作用。这些是数学物理学中用来发展宇宙量子理论的玩具模型。它们也是拓扑学家感兴趣的,拓扑学家研究空间在不同维度上的可能形状。一个重要的问题是这些形状的分类,这在四维空间中特别困难。Floer同调和相关的不变量是检测四维形状性质的最有用的工具。因为我们的宏观时空有四维,这是量子物理学家和宇宙学家寻找宇宙几何模型的重要输入。此外,最近Floer同源性在生物学中发现了令人惊讶的应用,更确切地说,在DNA打结的分析中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ciprian Manolescu其他文献
Cornered Heegaard Floer Homology
角赫加德弗洛尔同源性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.9
- 作者:
Christopher L. Douglas;Robert Lipshitz;Ciprian Manolescu - 通讯作者:
Ciprian Manolescu
Skein lasagna modules for 2-handlebodies
适用于 2 手柄的绞烤宽面条模块
- DOI:
10.1515/crelle-2022-0021 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ciprian Manolescu;Ikshu Neithalath - 通讯作者:
Ikshu Neithalath
Skein lasagna modules and handle decompositions
绞烤宽面条模块和手柄分解
- DOI:
10.1016/j.aim.2023.109071 - 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
Ciprian Manolescu;K. Walker;Paul Wedrich - 通讯作者:
Paul Wedrich
Floer Homology on the Extended Moduli Space
扩展模空间上的Floer同调
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Ciprian Manolescu;C. Woodward - 通讯作者:
C. Woodward
From zero surgeries to candidates for exotic definite 4‐manifolds
从零手术到异国情调的确定四流形的候选者
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ciprian Manolescu;Lisa Piccirillo - 通讯作者:
Lisa Piccirillo
Ciprian Manolescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ciprian Manolescu', 18)}}的其他基金
New Invariants of Knots and 3-Manifolds
结和 3 流形的新不变量
- 批准号:
2003488 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Floer Homotopy Theory
FRG:合作研究:弗洛尔同伦理论
- 批准号:
1563615 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Topological Applications of Floer Theory
弗洛尔理论的拓扑应用
- 批准号:
1402914 - 财政年份:2014
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Invariants in Low-Dimensional Topology
低维拓扑中的不变量
- 批准号:
1104406 - 财政年份:2011
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Applications and Refinements of Floer Homology
Floer同调性的应用和改进
- 批准号:
0852439 - 财政年份:2008
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
相似海外基金
Could Ultrasonic Vocalisations Provide The Elusive, Graded Measure Of Affective State Needed To Inform Refinements For The Laboratory Rat?
超声波发声能否提供难以捉摸的、分级的情感状态测量,以通知实验室老鼠的改进?
- 批准号:
NC/Y00082X/1 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Research Grant
Motivational Refinements for Facilitating Reinforcement Schedule Thinning
促进强化计划细化的激励细化
- 批准号:
10729562 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
The Brumer-Stark Conjecture and its Refinements
布鲁默-斯塔克猜想及其改进
- 批准号:
2200787 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Stable homotopy refinements in higher representation theory
更高表示理论中的稳定同伦改进
- 批准号:
567835-2022 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Postdoctoral Fellowships
Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
- 批准号:
RGPIN-2022-04571 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap Methods in High Dimensions: Complex Dependence Structures and Refinements
高维引导方法:复杂的依赖结构和改进
- 批准号:
2014636 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Big Room Spatial Positioning Algorithm Refinements
大房间空间定位算法的改进
- 批准号:
537437-2018 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
PROMISE - Program Refinements to Optimize Model Impact and Scalability based on Evidence
PROMISE - 基于证据优化模型影响和可扩展性的程序改进
- 批准号:
10333327 - 财政年份:2018
- 资助金额:
$ 14.1万 - 项目类别:
PROMISE - Program Refinements to Optimize Model Impact and Scalability based on Evidence
PROMISE - 基于证据优化模型影响和可扩展性的程序改进
- 批准号:
10083232 - 财政年份:2018
- 资助金额:
$ 14.1万 - 项目类别:
Novel Applications and Refinements of Current Imaging Techniques in Perinatal and Childhood Death Investigation
当前成像技术在围产期和儿童死亡调查中的新应用和改进
- 批准号:
MR/R002118/1 - 财政年份:2017
- 资助金额:
$ 14.1万 - 项目类别:
Fellowship