Topological Applications of Floer Theory
弗洛尔理论的拓扑应用
基本信息
- 批准号:1402914
- 负责人:
- 金额:$ 53.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gauge theory is the study of a particular kind of non-linear differential equations, that originally appeared in quantum physics. In mathematics, the solutions to these equations can be used to understand the topology (the shape) of the underlying space. When studying three-dimensional shapes, the information from gauge theory is encoded into an algebraic structure called Floer homology. The project aims to study different versions of Floer homology and their applications to topology. In particular, although Floer homology is associated to three-dimensional spaces, by an indirect route it can give insights into the triangulations of spaces of dimension five or higher; classifying these triangulations is a major open problem. A triangulation is a decomposition of the space into polyhedra, and gives a simple combinatorial description of the space. The project also aims at constructing new variants of Floer homology, with inspiration drawn from recent advances in quantum physics. In a different direction, through collaboration with computer scientists, it is proposed to apply topology to the classification of distributed computing models.The project concerns Floer theory and its applications to the study of both low dimensional and high dimensional manifolds. In particular, the PI will investigate the Seiberg-Witten Floer stable homotopy types of three-manifolds and the associated Pin(2)- equivariant Seiberg-Witten Floer homology. These theories can be used to get information about the homology cobordism group in three dimensions. In turn, homology cobordism gives insight into the classification of triangulations for manifolds of dimension at least five. Similar methods will be used to study the intersection forms of spin four-manifolds. The PI will also work on constructing Pin(2) versions of Heegaard Floer homology and knot Floer homology, and on the development of new computational techniques for Heegaard Floer homology. Furthermore, in an ongoing collaboration with computer scientists, the PI is exploring applications of topology to distributed computing; there, the solvability of a given task by a system of several computers can be rephrased in terms of a question in homotopy theory.
规范理论是研究一种特殊的非线性微分方程,最初出现在量子物理学中。在数学中,这些方程的解可以用来理解底层空间的拓扑(形状)。在研究三维形状时,来自规范理论的信息被编码成一种称为弗洛尔同调的代数结构。该项目旨在研究Floer同调的不同版本及其在拓扑学中的应用。特别是,虽然弗洛尔同调与三维空间有关,但通过间接的途径,它可以深入了解五维或更高维空间的三角剖分;对这些三角剖分进行分类是一个主要的开放问题。三角剖分是将空间分解为多面体,并给出空间的简单组合描述。该项目还旨在构建Floer同源性的新变体,灵感来自量子物理学的最新进展。在另一个不同的方向,通过与计算机科学家的合作,提出了将拓扑学应用于分布式计算模型的分类。该项目涉及Floer理论及其在低维和高维流形研究中的应用。特别地,PI将研究三流形的Seiberg-Witten Floer稳定同伦类型和相关的Pin(2)-等变Seiberg-Witten Floer同调。这些理论可以用来得到三维空间中同调配边群的信息。反过来,同调配边使洞察到分类的三角形流形的维度至少为5。类似的方法将被用来研究自旋四维流形的相交形式。 PI还将致力于构建Pin(2)版本的Heegaard Floer同调和knot Floer同调,以及开发Heegaard Floer同调的新计算技术。此外,在与计算机科学家的持续合作中,PI正在探索拓扑在分布式计算中的应用;在那里,由多台计算机组成的系统对给定任务的可解性可以用同伦理论中的一个问题来重新表述。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ciprian Manolescu其他文献
Cornered Heegaard Floer Homology
角赫加德弗洛尔同源性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.9
- 作者:
Christopher L. Douglas;Robert Lipshitz;Ciprian Manolescu - 通讯作者:
Ciprian Manolescu
Skein lasagna modules for 2-handlebodies
适用于 2 手柄的绞烤宽面条模块
- DOI:
10.1515/crelle-2022-0021 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ciprian Manolescu;Ikshu Neithalath - 通讯作者:
Ikshu Neithalath
Skein lasagna modules and handle decompositions
绞烤宽面条模块和手柄分解
- DOI:
10.1016/j.aim.2023.109071 - 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
Ciprian Manolescu;K. Walker;Paul Wedrich - 通讯作者:
Paul Wedrich
Floer Homology on the Extended Moduli Space
扩展模空间上的Floer同调
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Ciprian Manolescu;C. Woodward - 通讯作者:
C. Woodward
From zero surgeries to candidates for exotic definite 4‐manifolds
从零手术到异国情调的确定四流形的候选者
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ciprian Manolescu;Lisa Piccirillo - 通讯作者:
Lisa Piccirillo
Ciprian Manolescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ciprian Manolescu', 18)}}的其他基金
New Invariants of Knots and 3-Manifolds
结和 3 流形的新不变量
- 批准号:
2003488 - 财政年份:2020
- 资助金额:
$ 53.72万 - 项目类别:
Continuing Grant
Floer Theories for 3-Manifolds
3 流形的 Floer 理论
- 批准号:
2028658 - 财政年份:2019
- 资助金额:
$ 53.72万 - 项目类别:
Continuing Grant
Floer Theories for 3-Manifolds
3 流形的 Floer 理论
- 批准号:
1708320 - 财政年份:2017
- 资助金额:
$ 53.72万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Floer Homotopy Theory
FRG:合作研究:弗洛尔同伦理论
- 批准号:
1563615 - 财政年份:2016
- 资助金额:
$ 53.72万 - 项目类别:
Standard Grant
Invariants in Low-Dimensional Topology
低维拓扑中的不变量
- 批准号:
1104406 - 财政年份:2011
- 资助金额:
$ 53.72万 - 项目类别:
Continuing Grant
Applications and Refinements of Floer Homology
Floer同调性的应用和改进
- 批准号:
0852439 - 财政年份:2008
- 资助金额:
$ 53.72万 - 项目类别:
Standard Grant
Applications and Refinements of Floer Homology
Floer同调性的应用和改进
- 批准号:
0803465 - 财政年份:2008
- 资助金额:
$ 53.72万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 53.72万 - 项目类别:
Continuing Grant
Computations and applications of Seiberg-Witten Floer stable homotopy type
Seiberg-Witten Floer稳定同伦型的计算与应用
- 批准号:
23K03115 - 财政年份:2023
- 资助金额:
$ 53.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Bordered Floer homology and applications
职业:Bordered Floer 同源性和应用
- 批准号:
2145090 - 财政年份:2022
- 资助金额:
$ 53.72万 - 项目类别:
Continuing Grant
Applications of Gauge Theory and Floer Homology to Low-Dimensional Topology
规范理论和Floer同调在低维拓扑中的应用
- 批准号:
1811111 - 财政年份:2018
- 资助金额:
$ 53.72万 - 项目类别:
Continuing Grant
Research on applications of Floer theory and persistence modules
Florer理论和持久性模块的应用研究
- 批准号:
18J00335 - 财政年份:2018
- 资助金额:
$ 53.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Extensions of Heegaard Floer Homology and Applications to Topology
Heegaard Floer 同调的扩展及其在拓扑中的应用
- 批准号:
1711100 - 财政年份:2017
- 资助金额:
$ 53.72万 - 项目类别:
Standard Grant
Homotopy theoretic study of Floer theory and its applications
Floer理论的同伦理论研究及其应用
- 批准号:
16K17590 - 财政年份:2016
- 资助金额:
$ 53.72万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Invariants of bordered 3-manifolds and contact structures in Floer homology, connections with Khovanov homology, and applications
Floer 同调中的有界 3 流形和接触结构的不变量、与 Khovanov 同调的联系以及应用
- 批准号:
1406383 - 财政年份:2014
- 资助金额:
$ 53.72万 - 项目类别:
Standard Grant
Floer homological methods in symplectic geometry and applications
辛几何中的Floer同调方法及其应用
- 批准号:
252380623 - 财政年份:2014
- 资助金额:
$ 53.72万 - 项目类别:
Research Grants
Heegaard Floer homology and its applications to low-dimensional topology
Heegaard Florer 同调及其在低维拓扑中的应用
- 批准号:
1103976 - 财政年份:2011
- 资助金额:
$ 53.72万 - 项目类别:
Standard Grant