Periodic Polymeric Materials: Deaf and Blind Structures
周期性高分子材料:聋盲结构
基本信息
- 批准号:0804449
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYPeriodic and quasiperiodic polymeric structures at the sub-micron and nano scale offer many interesting scientific opportunities for fundamental studies of material behavior at these length scales. This proposal describes a unified approach for the experimental investigation and theoretical modeling of periodic polymer materials which can simultaneously act as hypersonic phononic crystals and visible wavelength photonic crystals. Structures will be fabricated using block polymer self-assembly and interference and electron beam lithography. We plan to explore novel photonic bandgap structures fabricated via double inversion techniques as well as through direct fabrication with unique organic-inorganic hybrid monomers. Brillouin light scattering is an ideally suited method for the direct experimental measurement of phonon dispersion relations while transmission and reflection measurements of incident light will be employed to assess the optical dispersion relations. FEM modeling provides the ability to model elastic wave propagation in a wide range of bicomponent periodic structures and numerical techniques are well established for modeling light wave propagation. The combination of these tools and approaches constitutes a complete methodology for fabrication and characterization, measurement and modeling of this exciting new class of materials. NON-TECHNICAL SUMMARYDual band gap materials for sound and light (?Deaf and Blind Materials?) are a step towards creation of material systems with unusual properties. Success in the present endeavor will provide a pathway forward for construction of multicomponent, hierarchically structured materials designed to provide a set of key properties. This work will help us understand the basic nature of the propagation of light and sound through nanostructured polymeric materials. This work promises to enhance the foundations for experimental studies of phononic, photonic and importantly dual band gap photonic-phononic crystals and open new pathways towards achieving new material properties (e.g.tailored thermal conductivity, significantly enhanced acousto-optical coupling) that can have important technological applications since the properties of the periodically structured material are no longer just due to the inherent material properties, but can be dominated by the role of wave interference within the structure to give novel and indeed revolutionary properties (e.g. localization of sound and light to specific places in the material) that are simply unattainable otherwise. Our efforts will develop both experimental techniques and skilled people to use them at the cutting edge of what is really the emerging new field of ?periodic materials.?Moreover, working with sound and light waves is a tremendous advantage for inspiring young minds to the wonders of science. This is because light waves and sound waves are ubiquitous ? we are essentially immersed in them every day and are continually receiving and sending such waves. The non-intuitive interactions of these waves with periodic structures elicits genuine awe. We plan to provide block copolymer films on substrates that can be readily manipulated by ?kitchen chemistry? using various stimuli such as vinegar and salt solutions. Motivated by our interests to introduce students to the interesting ways that waves interact with periodically structured materials at the micro- and nano- scale to create new properties as well as to highlite/motivate the study of certain topics in freshman year math, including Fourier series, we have just completed a monograph, ?Periodic Materials and Interference Lithography: photonics, phononics and mechanics,? to be published in summer, 2008 by Wiley-VCH.
亚微米和纳米尺度的周期性和准周期性聚合物结构为在这些长度尺度上进行材料行为的基础研究提供了许多有趣的科学机会。 该提案描述了一种统一的方法,用于周期性聚合物材料的实验研究和理论建模,这些材料可以同时充当高超音速声子晶体和可见波长光子晶体。结构将使用嵌段聚合物自组装和干涉以及电子束光刻来制造。 我们计划探索通过双反转技术以及通过直接制造独特的有机-无机混合单体制造的新型光子带隙结构。 布里渊光散射是直接实验测量声子色散关系的理想方法,而入射光的透射和反射测量将用于评估光学色散关系。FEM建模提供了在宽范围的双组分周期性结构中对弹性波传播进行建模的能力,并且已经很好地建立了用于对光波传播进行建模的数值技术。 这些工具和方法的组合构成了一个完整的方法,用于制造和表征,测量和建模这一令人兴奋的新材料。非技术概述声光双带隙材料(?)聋盲材料?)是创造具有不寻常特性的材料系统的一步。 在目前的奋进的成功将提供一个多组分,分层结构的材料,旨在提供一组关键性能的建设前进的道路。 这项工作将帮助我们了解光和声音通过纳米结构聚合物材料传播的基本性质。这项工作有望为声子晶体、光子晶体以及重要的双带隙光子-声子晶体的实验研究奠定基础,并为实现新的材料特性开辟新的途径(例如,定制的导热性、显著增强的声光耦合),其可以具有重要的技术应用,因为周期性结构化材料的性质不再仅仅是由于固有的材料性质,但是可以通过结构内的波干涉的作用来控制,以给出新颖的和实际上革命性的特性(例如,将声音和光定位到材料中的特定位置),这些特性在其他情况下根本无法实现。 我们的努力将开发实验技术和熟练的人使用它们在什么是真正的新兴新领域的前沿?周期性材料。此外,与声波和光波一起工作对于激发年轻人对科学奇迹的兴趣是一个巨大的优势。这是因为光波和声波无处不在吗?我们基本上每天都沉浸在其中,并不断接收和发送这种波。 这些波与周期性结构的非直观相互作用让人产生真正的敬畏。我们计划提供嵌段共聚物薄膜基板上,可以很容易地操纵?厨房化学?使用各种刺激物,如醋和盐溶液。 出于我们的兴趣,向学生介绍波与周期性结构材料在微米和纳米尺度上相互作用的有趣方式,以创造新的属性,并激发对大一数学中某些主题的研究,包括傅立叶级数,我们刚刚完成了一本专著,?周期性材料与干涉光刻:光子学、声子学与力学,?将于2008年夏天由Wiley-VCH出版。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin Thomas其他文献
Black Hole Thermodynamics
黑洞热力学
- DOI:
10.1142/9781783264834_0004 - 发表时间:
2005 - 期刊:
- 影响因子:5
- 作者:
D. Raine;Edwin Thomas - 通讯作者:
Edwin Thomas
Multi-Res-Attention UNet: A CNN Model for the Segmentation of Focal Cortical Dysplasia Lesions from Magnetic Resonance Images
多分辨率注意力 UNet:用于从磁共振图像中分割局灶性皮质发育不良病变的 CNN 模型
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:7.7
- 作者:
Edwin Thomas;Pawan S. Jogi;Shushant Kumar;Anmol Horo;S. Niyas;S. Vinayagamani;C. Kesavadas;Jeny Rajan - 通讯作者:
Jeny Rajan
Edwin Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin Thomas', 18)}}的其他基金
EAGER: Structures of Defects and Interfaces in Block Copolymer Materials
EAGER:嵌段共聚物材料中的缺陷和界面结构
- 批准号:
1742864 - 财政年份:2017
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design Of Polymeric Microtruss Structures As Highly-Ordered Multifunctional Coatings
合作研究:合理设计聚合物微桁架结构作为高阶多功能涂层
- 批准号:
0556211 - 财政年份:2006
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
IMR: Acquisition of Optical Instrumentation for Determination of the Band Structure of Photonic and Phononic Crystals and Education of Students
IMR:购买光学仪器来确定光子和声子晶体的能带结构以及学生教育
- 批准号:
0414974 - 财政年份:2004
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Opportunities in Block Copolymers: Reactive Rod/Coils and Magnetooptic Nanocomposites
嵌段共聚物的机遇:反应棒/线圈和磁光纳米复合材料
- 批准号:
0308133 - 财政年份:2003
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Development of Novel Properties in Block Copolymer Systems
嵌段共聚物体系新性能的开发
- 批准号:
9807591 - 财政年份:1998
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Control of Orientation ofLiquid Crystalline Polymers and Block Copolymers by Substrates and Applied Fields
美法合作研究:通过基材和应用领域控制液晶聚合物和嵌段共聚物的取向
- 批准号:
9726544 - 财政年份:1998
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Novel Properties of Liquid Crystal/Coil Diblock Copolymers via Tandem Interactions
液晶/线圈二嵌段共聚物通过串联相互作用的新特性
- 批准号:
9705271 - 财政年份:1997
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Ultrastructural Properties of Polymers
聚合物的超微结构性质
- 批准号:
9214853 - 财政年份:1993
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
- 批准号:
2415569 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
CAREER: Nanoscale Resolution of Near-Interface Crystallization in Multicomponent Semicrystalline Polymeric Materials
职业:多组分半晶聚合物材料中近界面结晶的纳米级分辨率
- 批准号:
2338613 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Development of Innovative Entropy-Driven Segregation Method for Surface Modification of Polymeric Materials
开发用于聚合物材料表面改性的创新熵驱动偏析方法
- 批准号:
23K17944 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Temperature-Responsive Controlled Drug Release by Dynamic Covalent Polymeric Materials for Cancer Chronotherapy
用于癌症计时疗法的动态共价聚合物材料的温度响应控制药物释放
- 批准号:
22KJ0434 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Water dynamics via quasielastic neutron scattering on mechanical properties of multilevel hierarchical polymeric materials
通过准弹性中子散射的水动力学对多级分层聚合物材料机械性能的影响
- 批准号:
23K11712 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Breaking the chain - sustainable polymeric materials with plasma technology
打破链条——采用等离子技术的可持续聚合物材料
- 批准号:
2887555 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Studentship
Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
- 批准号:
RGPIN-2018-05243 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Discovery Grants Program - Individual
Microarchitecture for advanced polymeric materials
先进聚合物材料的微结构
- 批准号:
CRC-2021-00196 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Canada Research Chairs
3D microarchitecture for functional polymeric materials and their applications
功能高分子材料的3D微结构及其应用
- 批准号:
RGPIN-2017-04489 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Discovery Grants Program - Individual
Multi-phase polymeric materials: structure, properties and interfacial phenomena
多相聚合物材料:结构、性能和界面现象
- 批准号:
RGPIN-2017-06733 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




