Graphene- and Metal-based Atomically Precise Nanoelectronics

基于石墨烯和金属的原子级精确纳米电子学

基本信息

  • 批准号:
    0805136
  • 负责人:
  • 金额:
    $ 44.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

Technical: The goal of the project is to develop fabrication methods for graphene- and metal-based nanostructures with atomically precise edges and boundaries, and to perform comprehensive variable-temperature magnetotransport measurements on these samples for comparison with theoretical predictions. Other goals include the scientific exploration of graphene- and metal-based devices with all three spatial dimensions smaller than 10 nm, and phenomena derived from this quantum confinement, including the opening of an orientation- and width-dependent energy gap, unusual quantum confinement effects due to the massless graphene charge carriers, and half-metallic behavior of graphene of interest for spintronic applications. Long-term objectives of the project are 1) precise control over the fabrication of such samples so that the deleterious effects of edge defects (vacancies) and the like can be avoided, and 2) a detailed understanding of their physics so that the full power of their electronic properties can be harnessed. A second theme of the project is the use of mass transport processes due to applied currents, magnetic fields, temperature gradients, and vapor flow to achieve atomically precise nanofabrication. This detailed investigation of atomic scale mass migration effects will have broad impact on the understanding of aging and failure of nanoscale devices, as the two are closely linked. Methods of atomically precise nanofabrication will be based on Feedback Controlled Electromigration of metal constrictions. This method may enable creation of metal masks with atomically smooth edges that will be used to define graphene nanostrips with all three dimensions smaller than 10 nm in size. Metal nanoparticles will be used to catalytically etch graphene into nanoribbons whose edges run parallel to well defined crystal axes of the carbon lattice. Graphene point contacts will be formed by direct FCE. Metal nanowires with integrated contacts and atomically precise sidewalls will be fabricated by controlling thermal gradients that develop during FCE. Micrometer-long nanowires with atomically smooth sidewalls will be sought by performing the FCE process with simultaneous independent control of thermal gradients provided by integrated heaters. Details of the thermal gradients and their evolution will be measured with nanoscale spatial resolution and 100 microsec. - 1 ms time resolution. Non-technical: The project addresses basic research issues in a topical area of electronic/photonic materials science with high technological relevance. Research and education are integrated with emphasis in education, outreach, international collaboration, and impact on related fields in science and engineering. Training will be provided to graduate students, undergraduates, and high school students in a dynamic and interdisciplinary research environment. Outreach and education efforts by the PIs will include a partnership with the Penn Science Teachers Institute to provide research experiences for their teacher graduates and to develop short courses to increase the content knowledge of high school science teachers. Philadelphia's K-12 community will be engaged through participation in the annual NanoDay@PENN, including technical posters from the group and presentations appropriate for a general audience. Research infrastructure will be enhanced through an international partnership with NanoAFNET, the Nanosciences African Network; the project will host up to three scientists per year with research interests in the area of nanoelectronics and nanomaterials.
技术:该项目的目的是开发具有原子上精确边缘和边界的石墨烯和金属纳米结构的制造方法,并在这些样品上对这些样品进行全面的可变磁通转移测量,以与理论预测进行比较。其他目标包括对所有三个空间维度小于10 nm的三个空间尺寸的科学探索,以及源自这种量子限制的现象,包括开放依赖于质量的石烯电荷载体引起的方向和宽度依赖性能量差异,不寻常的量子限制效果,以及一半 - 金属质量的兴趣。该项目的长期目标是1)精确控制此类样品的制造,因此可以避免边缘缺陷(空缺)等有害影响,以及2)对其物理的详细理解,以便可以利用其电子特性的全部力量。该项目的第二个主题是由于施加的电流,磁场,温度梯度和蒸气流而引起的质量传输过程,以实现原子质精确的纳米化。这项对原子量表批量迁移效应的详细研究将对对纳米级设备的衰老和失败的理解产生广泛的影响,因为两者紧密相连。原子上精确的纳米化方法的方法将基于金属收缩的反馈控制的电迁移。该方法可以实现具有原子光滑边缘的金属掩模,该掩膜将用于定义石墨烯纳米弹簧,其大小小于10 nm的所有三个维度。金属纳米颗粒将用于催化蚀刻石墨烯进入纳米容器,其边缘平行于碳晶格的晶体轴平行。石墨烯点触点将由直接FCE形成。具有集成触点和原子上精确的侧壁的金属纳米线将通过控制FCE期间发展的热梯度来制造。通过同时独立控制集成加热器提供的热梯度,将寻求具有原子光滑侧壁的微米长纳米线。热梯度及其进化的细节将通过纳米级空间分辨率和100 microSEC进行测量。 - 1 ms时间分辨率。非技术:该项目解决了具有高技术相关性的电子/光子材料科学主题领域的基础研究问题。研究和教育集中在教育,外展,国际合作以及对科学与工程领域相关领域的影响方面。将在动态和跨学科的研究环境中向研究生,本科生和高中生提供培训。 PIS的推广和教育工作将包括与Penn Science教师研究所建立合作伙伴关系,为他们的教师毕业生提供研究经验,并开发简短的课程,以增加高中科学教师的内容知识。费城的K-12社区将通过参加年度Nanoday@Penn的参与,包括该集团的技术海报和适合普通观众的演讲。研究基础设施将通过与Nanoafnet的国际伙伴关系(纳米科学网络)建立国际合作伙伴关系;该项目每年将在纳米电子和纳米材料领域拥有多达三名科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Johnson其他文献

The Greater Flamingo
更大的火烈鸟
  • DOI:
    10.5040/9781472596918
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Alan Johnson;F. Cézilly
  • 通讯作者:
    F. Cézilly
The Kinsey data: Marginal tabulations of the 1938-1963 interviews conducted by the Institute for Sex Research
金赛数据:性研究所 1938 年至 1963 年访谈的边缘表格
  • DOI:
  • 发表时间:
    1979
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Gebhard;Alan Johnson;A. Kinsey
  • 通讯作者:
    A. Kinsey
Beh?et syndrome
白塞氏综合征
  • DOI:
    10.1016/s0022-3476(85)80611-9
  • 发表时间:
    1985
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ammann;Alan Johnson;G. Fyfe;R. Leonards;D. Wara;M. Cowan
  • 通讯作者:
    M. Cowan
Norms of composition operators with rational symbol
  • DOI:
    10.1016/j.jmaa.2006.01.005
  • 发表时间:
    2006-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sean Effinger-Dean;Alan Johnson;Joseph Reed;Jonathan Shapiro
  • 通讯作者:
    Jonathan Shapiro
Influence Of High Molecular Weight Factor VIII On The Expression Of Factor VIII Procoagulant Activity
高分子量因子VIII对因子VIII促凝血活性表达的影响
  • DOI:
    10.1055/s-0038-1652746
  • 发表时间:
    1981
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Alan Johnson;M. Soberano;Steven Kowalski;Anne Fulton;V. Macdonald;Martin Semar
  • 通讯作者:
    Martin Semar

Alan Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Johnson', 18)}}的其他基金

Collaborative Research: Implementing Topologically Protected Gigahertz Acoustic Circuits
合作研究:实现拓扑保护的千兆赫声电路
  • 批准号:
    2221326
  • 财政年份:
    2022
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Standard Grant
EFRI 2-DARE: Functionalized Monolayer Heterostructures for Biosensors with Optical Readout
EFRI 2-DARE:用于具有光学读出功能的生物传感器的功能化单层异质结构
  • 批准号:
    1542879
  • 财政年份:
    2015
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Standard Grant
Follicle Selection and Differentation in the Avian Ovary
鸟类卵巢中的卵泡选择和分化
  • 批准号:
    1354713
  • 财政年份:
    2014
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Standard Grant
AIR Option 2: Research Alliance Bio-enabled Nanosensors with Fully Programmable Ligand Detection
AIR 选项 2:具有完全可编程配体检测功能的研究联盟生物纳米传感器
  • 批准号:
    1312202
  • 财政年份:
    2013
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Standard Grant
I-Corps: Pilot Production Of Large Area Uniform Single-Crystal Graphene Films
I-Corps:大面积均匀单晶石墨烯薄膜的中试生产
  • 批准号:
    1158721
  • 财政年份:
    2011
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Standard Grant
International: Student Exchange for Research on Nano/Biotechnology
国际:纳米/生物技术研究学生交换
  • 批准号:
    1130994
  • 财政年份:
    2011
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Standard Grant
Cellular Determinants of Granulosa Cell Differentiation in Avian Ovarian Follicles
禽类卵巢卵泡颗粒细胞分化的细胞决定因素
  • 批准号:
    0968784
  • 财政年份:
    2009
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Continuing Grant
NSEC on Molecular Function at the Nano/Bio Interface
NSEC 探讨纳米/生物界面的分子功能
  • 批准号:
    0832802
  • 财政年份:
    2009
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Cooperative Agreement
Cellular Determinants of Granulosa Cell Differentiation in Avian Ovarian Follicles
禽类卵巢卵泡颗粒细胞分化的细胞决定因素
  • 批准号:
    0841204
  • 财政年份:
    2009
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Continuing Grant
Ovarian Follicle Selection Mediated by Release from Inhibitory Map Kinase Signaling
抑制图谱激酶信号释放介导的卵巢卵泡选择
  • 批准号:
    0445949
  • 财政年份:
    2005
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于改性石墨烯内扩散逆向实现高温金属表面的碳平衡效应
  • 批准号:
    52374378
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于界面连续逾渗模型的网状石墨烯/金属复合材料力学性能研究
  • 批准号:
    12302266
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于嵌入赝储锌的过渡金属钒酸盐/石墨烯材料构筑及动力学增强机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于嵌入赝储锌的过渡金属钒酸盐/石墨烯材料构筑及动力学增强机制研究
  • 批准号:
    52202051
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于功能化贵金属纳米材料的石墨烯晶体管传感器的构建及其对循环肿瘤靶标的分析应用研究
  • 批准号:
    52171177
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Synthesis of force-responsive flexible graphene-based catalysts
力响应柔性石墨烯基催化剂的合成
  • 批准号:
    21K14490
  • 财政年份:
    2021
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design and property prediction of post-graphene thin-film materials based on first-principles electronic-state calculation
基于第一性原理电子态计算的后石墨烯薄膜材料设计与性能预测
  • 批准号:
    20K05274
  • 财政年份:
    2020
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancing graphene-based sensors with metal-organic nanosheets
使用金属有机纳米片增强石墨烯传感器
  • 批准号:
    2453424
  • 财政年份:
    2020
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Studentship
Scalable High Performance 1D Metal-Insulator-Graphene Diodes for High Frequency Applications Based on 2D Materials from Chemical Vapor Deposition
基于化学气相沉积二维材料的可扩展高性能一维金属绝缘体石墨烯二极管,用于高频应用
  • 批准号:
    391996624
  • 财政年份:
    2018
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Research Grants
Tunable graphene-based metal nanocomposite materials for electro-catalytic application
用于电催化应用的可调石墨烯基金属纳米复合材料
  • 批准号:
    326939428
  • 财政年份:
    2017
  • 资助金额:
    $ 44.49万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了