Magnetic Anisotropy in Nanoscale Systems Produced by Fast Laser Processing: Fundamental Mechanisms, Control and Novel Magnetic Materials
快速激光加工产生的纳米级系统中的磁各向异性:基本机制、控制和新型磁性材料
基本信息
- 批准号:0805258
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-15 至 2008-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL: The objectives of this high-risk exploratory research are (1) To determine the role of external magnetic field during laser-induced self-organization on the nanostructure and magnetic anisotropy and (2) To develop a phenomenological model to understand the external field dependent effects. PIs will realize these goals through an integrated activity involving experiments of nanosecond laser-induced self-organization, measurement of nanoscale magnetism, and phenomenological modeling of magnetization in these nanoscopic systems. The control of nanoscale magnetic anisotropy, which prompts the magnetization to point in desired directions, can be viewed as a fundamental requirement towards realizing functional nanomagnetic materials. Thus far, magnetic anisotropy has been realized primarily through the manipulation of two contributions: (i) shape anisotropy, i.e. with large aspect ratio structures; and (ii) magnetocrystalline anisotropy via crystallographic orientation through epitaxy or textured growth. Recently, PIs have discovered that near-hemispherical polycrystalline single-domain nanomagnets created by fast laser-induced self-organization show stable and size-dependent magnetic anisotropy in various directions. This behavior was universally present in all magnetic materials investigated, including Co, Ni, Fe and an Fe-Co alloy. In this project, PIs aim to achieve a fundamental understanding of magnetic anisotropy and its control in nanoscale materials through the following activities: (i) Investigate the role of thermal and uniaxial strain, and hydrostatic pressure on magnetic anisotropy in fast laser self-organized nanoparticles. (ii) Investigate the role of external magnetic field on magnetic anisotropy, microstructure, and nucleation and growth. (iii) Develop a phenomenological model of nanoscale magnetism for fast laser self-organized nanostructures. The intellectual merit of this integrated experimental and theoretical activity will stem from the following features: (a) This will be the first definitive work exploring the coupling between fast laser self-organization, thermal strain, external magnetic field and nucleation and growth on nanoscale magnetic anisotropy. This will result in ?nanoparticle phase diagrams? that accurately describe this coupling and the resulting microstructure and magnetic anisotropy. (b) PIs anticipate the design and synthesis of novel magnetic materials that could impact areas of data storage, sensing and information processing. NON-TECHNICAL: The broader impact from this activity will be through commitments to broadening research and education experiences of graduate, undergraduate and high-school students. Specific impacts include: (a) The training of undergraduate and graduate students in a multidisciplinary area comprising materials science, laser-materials processing, condensed matter physics and magnetism. (b) The phenomenological model developed through this activity could permit researchers and innovators to undertake a design and discovery based program to synthesize new materials. (c) Active participation of university and high-school students (through the Pfizer/Solutia STARS program) will help train future scientists in the area of nanoscience, which is of core national interest, and thereby help the US continue its leadership in science and technology.
技术:这项高风险探索性研究的目标是(1)确定激光诱导自组织过程中外加磁场对纳米结构和磁各向异性的作用,以及(2)建立一个唯象模型来理解外场依赖效应。PIS将通过一项综合活动来实现这些目标,包括纳秒激光诱导的自组织实验,纳米尺度磁性的测量,以及这些纳米系统中磁化的唯象模型。控制纳米尺度的磁各向异性,促使磁化强度指向所需的方向,是实现纳米功能磁性材料的基本要求。到目前为止,磁各向异性主要是通过两个方面的作用实现的:(I)形状各向异性,即具有大长宽比结构;(Ii)通过外延或织构生长的晶体取向实现磁晶各向异性。最近,PI发现由快激光诱导自组织产生的近半球多晶单畴纳米磁体在不同方向上表现出稳定的、大小相关的磁各向异性。这一行为普遍存在于所研究的所有磁性材料中,包括Co、Ni、Fe和Fe-Co合金。在这个项目中,PI旨在通过以下活动实现对纳米材料中磁各向异性及其控制的基本了解:(I)研究快速激光自组织纳米颗粒中热应变和单轴应变以及静水压力对磁各向异性的作用。(Ii)研究外加磁场对磁各向异性、微观结构以及形核和生长的影响。(3)发展了快激光自组织纳米结构的纳米尺度磁性唯象模型。这一综合的实验和理论活动的智力价值将来自以下特征:(A)这将是第一个探索快速激光自组织、热应变、外部磁场与纳米尺度磁各向异性形核和生长之间的耦合的决定性工作。这会产生纳米颗粒相图吗?准确地描述了这种耦合以及由此产生的微结构和磁各向异性。(B)个人投资项目预期设计和合成可能对数据存储、传感和信息处理领域产生影响的新型磁性材料。非技术性:这项活动的更广泛影响将是通过承诺拓宽研究生、本科生和高中生的研究和教育经验。具体影响包括:(A)在包括材料科学、激光材料加工、凝聚态物理和磁学在内的多学科领域对本科生和研究生进行培训。(B)通过这项活动开发的现象学模型可以使研究人员和创新者开展一项以设计和发现为基础的方案,以合成新材料。(C)大学生和高中生的积极参与(通过辉瑞/首诺之星计划)将有助于培训纳米科学领域的未来科学家,这是国家核心利益,从而帮助美国继续保持其在科学和技术方面的领导地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramki Kalyanaraman其他文献
Ramki Kalyanaraman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramki Kalyanaraman', 18)}}的其他基金
Improving Career Readiness of STEM Students Through Worksite Visits, Job Shadowing, and Internships during Their Early College Years
通过在大学早期的工作现场参观、工作见习和实习,提高 STEM 学生的职业准备度
- 批准号:
1953762 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
A high-speed optical switch based on transforming the shape of nanomaterial through an interacting magnetic and thermal field
基于通过相互作用的磁场和热场改变纳米材料形状的高速光开关
- 批准号:
1607874 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Thermally-induced Rayleigh-taylor like instabilities for nanoscale synthesis
用于纳米级合成的热致瑞利泰勒样不稳定性
- 批准号:
1402962 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
EAGER: Thermal pulsing enabled fast and reversible morphology control
EAGER:热脉冲实现快速、可逆的形态控制
- 批准号:
1349507 - 财政年份:2013
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Magnetic Anisotropy in Nanoscale Systems Produced by Fast Laser Processing: Fundamental Mechanisms, Control and Novel Magnetic Materials
快速激光加工产生的纳米级系统中的磁各向异性:基本机制、控制和新型磁性材料
- 批准号:
0856707 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative:Development of a Hydrogen Discriminating Low Temperature 1-D Nanocomposite Microsensor
合作:开发氢气识别低温一维纳米复合微传感器
- 批准号:
0801781 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Novel 3D Nanocomposites for Optical and Solar Applications: A First Principles Approach to Cost-Effective Design, Nanomanufacturing and Characterization.
合作研究:用于光学和太阳能应用的新型 3D 纳米复合材料:经济高效设计、纳米制造和表征的首要原则方法。
- 批准号:
0757589 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative:Development of a Hydrogen Discriminating Low Temperature 1-D Nanocomposite Microsensor
合作:开发氢气识别低温一维纳米复合微传感器
- 批准号:
0850574 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Fundamental Studies of Directed Assembly Leading to Innovative Processing of Controlled Thin Film Nanostructures
职业:定向组装的基础研究导致受控薄膜纳米结构的创新加工
- 批准号:
0851597 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Novel 3D Nanocomposites for Optical and Solar Applications: A First Principles Approach to Cost-Effective Design, Nanomanufacturing and Characterization.
合作研究:用于光学和太阳能应用的新型 3D 纳米复合材料:经济高效设计、纳米制造和表征的首要原则方法。
- 批准号:
0855949 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似海外基金
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
- 批准号:
2342129 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
- 批准号:
2330254 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
- 批准号:
23K17398 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
- 批准号:
2240506 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
- 批准号:
23K05776 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
- 批准号:
2322719 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
- 批准号:
EP/X025454/1 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Research Grant
Global optimization of anisotropy in antiferromagnets
反铁磁体各向异性的全局优化
- 批准号:
2740295 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Studentship














{{item.name}}会员




