A high-speed optical switch based on transforming the shape of nanomaterial through an interacting magnetic and thermal field
基于通过相互作用的磁场和热场改变纳米材料形状的高速光开关
基本信息
- 批准号:1607874
- 负责人:
- 金额:$ 31.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A high-speed optical switch based on transforming the shape of nanomaterial through an interacting magnetic and thermal field. AbstractThe magnetic field has intrigued many generations of scientists and engineers. One reason is that, once a magnetic field is created it can supply an almost limitless force, such as the Lorentz force, on electrical charges and currents. If this could be exploited then one could have optical, electronic, and data storage technologies that operate on very low power with low energy consumption. Unfortunately, typical magnets, such as a refrigerator magnet, cannot change the optical properties of materials because it applies very weak forces on the charges flowing within the solids and liquids in our familiar environment. This is one reason why nature does not have examples of materials whose optical properties are controllable by magnetic fields. Here the researchers propose to solve this problem by utilizing the fact that when a material melts or freezes, a short lived (few nanoseconds) but extremely large current can be generated at the boundary between the solid and liquid regions. This transient current could be large enough such that, when a refrigerator magnet is brought in its vicinity, the material can be deformed substantially. Thus, physical properties such as the transmission of light can be dramatically changed. They call this effect the MAgneto-THermal or MaTh effect and anticipate the creation of a new type of high-speed optical switching device based on reversibly changing its light transparency. Such devices could find application in optical and quantum computing hardware and in electronic components. Large transient thermal gradients involving a solidification or melting front can be created within nanomaterials by heating by nanosecond pulsed laser light. Preliminary hypothesis suggests that at the boundary of a moving phase front, i.e. solidification or melting front, the mass density difference creates a charge imbalance resulting in a large transient current density. Thermal modeling studies and experiments show that metal nanoparticles in the 10-100 nm size range melted by nanosecond pulses can undergo shape deformation and even break-up in the presence of moderate magnetic fields. Since these shape changes and break-up effects can be reversed by laser thermal dewetting effects, a very fast change in optical properties can be achieved in the presence of a simultaneous magnetic and thermal field. The goal of the research is to design, fabricate, and demonstrate an optical device based on the magnetic field break-up and thermal field re-assembly of metal nanoparticles. The researchers plan to use a combination of thin film deposition, cost-effective nanosphere lithography, etching, pulsed laser melting, and optical characterization. They will investigate the device performance as a function of laser and materials parameters. They anticipate that the proposed tasks will also enhance their fundamental understanding of the coupled magnetic-thermal effect. Therefore, new knowledge as well as a new technology is expected from the planned experimental and theoretical investigations.
一种基于相互作用的磁场和热场来改变纳米材料形状的高速光开关。摘要磁场引起了许多代科学家和工程师的兴趣。其中一个原因是,一旦产生磁场,它就可以为电荷和电流提供几乎无限的力,如洛伦兹力。如果可以利用这一点,那么人们就可以拥有在非常低的功率和低能耗下运行的光学、电子和数据存储技术。不幸的是,典型的磁铁,如冰箱磁铁,不能改变材料的光学性质,因为在我们熟悉的环境中,它对流动在固体和液体中的电荷施加非常微弱的力。这就是为什么自然界没有可由磁场控制光学性质的材料的例子的原因之一。在这里,研究人员建议通过利用这样一个事实来解决这个问题:当材料熔化或冻结时,在固体和液体区域之间的边界上可以产生短暂的(几纳秒)但极大的电流。这种暂态电流可能足够大,以至于当冰箱磁铁被带到它附近时,材料可以实质上变形。因此,可以显著改变诸如光的传输之类的物理属性。他们将这种效应称为磁热效应或数学效应,并预计将基于可逆地改变其光透明度来创造一种新型的高速光开关设备。这种设备可以在光学和量子计算硬件以及电子元件中找到应用。通过纳秒脉冲激光加热,可以在纳米材料内部产生包括凝固或熔化前沿在内的大的瞬时温度梯度。初步假设认为,在运动相前沿的边界,即凝固或熔化前沿,质量密度差产生电荷不平衡,导致较大的暂态电流密度。热模拟研究和实验表明,在中等磁场的作用下,纳秒脉冲熔化10-100 nm尺寸的金属纳米粒子可以发生形状变形甚至碎裂。由于这些形状变化和破裂效应可以被激光热脱湿效应逆转,因此在同时存在磁场和热场的情况下,可以实现光学性质的非常快速的变化。本研究的目标是设计、制造和展示一种基于金属纳米颗粒的磁场分解和热场重组的光学器件。研究人员计划使用薄膜沉积、成本效益高的纳米球光刻、蚀刻、脉冲激光熔化和光学表征的组合。他们将研究激光和材料参数对器件性能的影响。他们预计,拟议的任务还将加强他们对磁热耦合效应的基本理解。因此,有计划的实验和理论研究将带来新的知识和新的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramki Kalyanaraman其他文献
Ramki Kalyanaraman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramki Kalyanaraman', 18)}}的其他基金
Improving Career Readiness of STEM Students Through Worksite Visits, Job Shadowing, and Internships during Their Early College Years
通过在大学早期的工作现场参观、工作见习和实习,提高 STEM 学生的职业准备度
- 批准号:
1953762 - 财政年份:2020
- 资助金额:
$ 31.49万 - 项目类别:
Standard Grant
Thermally-induced Rayleigh-taylor like instabilities for nanoscale synthesis
用于纳米级合成的热致瑞利泰勒样不稳定性
- 批准号:
1402962 - 财政年份:2014
- 资助金额:
$ 31.49万 - 项目类别:
Standard Grant
EAGER: Thermal pulsing enabled fast and reversible morphology control
EAGER:热脉冲实现快速、可逆的形态控制
- 批准号:
1349507 - 财政年份:2013
- 资助金额:
$ 31.49万 - 项目类别:
Standard Grant
Magnetic Anisotropy in Nanoscale Systems Produced by Fast Laser Processing: Fundamental Mechanisms, Control and Novel Magnetic Materials
快速激光加工产生的纳米级系统中的磁各向异性:基本机制、控制和新型磁性材料
- 批准号:
0856707 - 财政年份:2008
- 资助金额:
$ 31.49万 - 项目类别:
Continuing Grant
Collaborative:Development of a Hydrogen Discriminating Low Temperature 1-D Nanocomposite Microsensor
合作:开发氢气识别低温一维纳米复合微传感器
- 批准号:
0801781 - 财政年份:2008
- 资助金额:
$ 31.49万 - 项目类别:
Standard Grant
Collaborative Research: Novel 3D Nanocomposites for Optical and Solar Applications: A First Principles Approach to Cost-Effective Design, Nanomanufacturing and Characterization.
合作研究:用于光学和太阳能应用的新型 3D 纳米复合材料:经济高效设计、纳米制造和表征的首要原则方法。
- 批准号:
0757589 - 财政年份:2008
- 资助金额:
$ 31.49万 - 项目类别:
Standard Grant
Magnetic Anisotropy in Nanoscale Systems Produced by Fast Laser Processing: Fundamental Mechanisms, Control and Novel Magnetic Materials
快速激光加工产生的纳米级系统中的磁各向异性:基本机制、控制和新型磁性材料
- 批准号:
0805258 - 财政年份:2008
- 资助金额:
$ 31.49万 - 项目类别:
Continuing Grant
Collaborative:Development of a Hydrogen Discriminating Low Temperature 1-D Nanocomposite Microsensor
合作:开发氢气识别低温一维纳米复合微传感器
- 批准号:
0850574 - 财政年份:2008
- 资助金额:
$ 31.49万 - 项目类别:
Standard Grant
CAREER: Fundamental Studies of Directed Assembly Leading to Innovative Processing of Controlled Thin Film Nanostructures
职业:定向组装的基础研究导致受控薄膜纳米结构的创新加工
- 批准号:
0851597 - 财政年份:2008
- 资助金额:
$ 31.49万 - 项目类别:
Standard Grant
Collaborative Research: Novel 3D Nanocomposites for Optical and Solar Applications: A First Principles Approach to Cost-Effective Design, Nanomanufacturing and Characterization.
合作研究:用于光学和太阳能应用的新型 3D 纳米复合材料:经济高效设计、纳米制造和表征的首要原则方法。
- 批准号:
0855949 - 财政年份:2008
- 资助金额:
$ 31.49万 - 项目类别:
Standard Grant
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于太赫兹光谱近场成像技术的应力场测量方法
- 批准号:11572217
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
阵风场中非定常大气湍流对沙粒跃移运动的影响
- 批准号:11102153
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于两级表面等离子共振增强结构的高灵敏度拉曼散射成像物理机制及制作工艺研究
- 批准号:61007018
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
堆栈型全光缓存研究
- 批准号:60977003
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
基于回廊耳语模式的非圆对称光学微谐振腔的发光特性及传感性能研究
- 批准号:10574032
- 批准年份:2005
- 资助金额:33.0 万元
- 项目类别:面上项目
基于软光刻法的光学互连耦合结构研究
- 批准号:60477019
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
新型液晶可变光衰减器的研制
- 批准号:60377019
- 批准年份:2003
- 资助金额:25.0 万元
- 项目类别:面上项目
利用混合遗传算法从多方位光流场恢复3D运动与结构的研究
- 批准号:60305003
- 批准年份:2003
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
电极/溶液界面上分子取向电位调控的准确测量
- 批准号:20373076
- 批准年份:2003
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
A fast CTOT for mapping whole brain hemodynamic activity in infants
用于绘制婴儿全脑血流动力学活动的快速 CTOT
- 批准号:
10591932 - 财政年份:2023
- 资助金额:
$ 31.49万 - 项目类别:
A new direction to achieve ultra-fast timing for positron emission tomography
实现正电子发射断层扫描超快定时的新方向
- 批准号:
9444922 - 财政年份:2017
- 资助金额:
$ 31.49万 - 项目类别:
Advanced Technology to Study Visual Function on a Cellular Scale
在细胞尺度上研究视觉功能的先进技术
- 批准号:
10018004 - 财政年份:2014
- 资助金额:
$ 31.49万 - 项目类别:
Advanced Technology to Study Visual Function on a Cellular Scale
在细胞尺度上研究视觉功能的先进技术
- 批准号:
10455547 - 财政年份:2014
- 资助金额:
$ 31.49万 - 项目类别:
Advanced Technology to Study Visual Function on a Cellular Scale
在细胞尺度上研究视觉功能的先进技术
- 批准号:
10661562 - 财政年份:2014
- 资助金额:
$ 31.49万 - 项目类别:
Advanced Technology to Study Visual Function on a Cellular Scale
在细胞尺度上研究视觉功能的先进技术
- 批准号:
10250413 - 财政年份:2014
- 资助金额:
$ 31.49万 - 项目类别:
Quantitative optical imaging of cilia-driven fluid flow
纤毛驱动流体流动的定量光学成像
- 批准号:
8683234 - 财政年份:2013
- 资助金额:
$ 31.49万 - 项目类别:
Quantitative optical imaging of cilia-driven fluid flow
纤毛驱动流体流动的定量光学成像
- 批准号:
8849968 - 财政年份:2013
- 资助金额:
$ 31.49万 - 项目类别:
Quantitative optical imaging of cilia-driven fluid flow
纤毛驱动流体流动的定量光学成像
- 批准号:
8479648 - 财政年份:2013
- 资助金额:
$ 31.49万 - 项目类别:
A patterned photostimulation microscope for studying neurons and microcircuitry
用于研究神经元和微电路的图案光刺激显微镜
- 批准号:
8052038 - 财政年份:2011
- 资助金额:
$ 31.49万 - 项目类别:














{{item.name}}会员




