Magnetic Anisotropy in Nanoscale Systems Produced by Fast Laser Processing: Fundamental Mechanisms, Control and Novel Magnetic Materials
快速激光加工产生的纳米级系统中的磁各向异性:基本机制、控制和新型磁性材料
基本信息
- 批准号:0856707
- 负责人:
- 金额:$ 26.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL: The objectives of this high-risk exploratory research are (1) To determine the role of external magnetic field during laser-induced self-organization on the nanostructure and magnetic anisotropy and (2) To develop a phenomenological model to understand the external field dependent effects. PIs will realize these goals through an integrated activity involving experiments of nanosecond laser-induced self-organization, measurement of nanoscale magnetism, and phenomenological modeling of magnetization in these nanoscopic systems. The control of nanoscale magnetic anisotropy, which prompts the magnetization to point in desired directions, can be viewed as a fundamental requirement towards realizing functional nanomagnetic materials. Thus far, magnetic anisotropy has been realized primarily through the manipulation of two contributions: (i) shape anisotropy, i.e. with large aspect ratio structures; and (ii) magnetocrystalline anisotropy via crystallographic orientation through epitaxy or textured growth. Recently, PIs have discovered that near-hemispherical polycrystalline single-domain nanomagnets created by fast laser-induced self-organization show stable and size-dependent magnetic anisotropy in various directions. This behavior was universally present in all magnetic materials investigated, including Co, Ni, Fe and an Fe-Co alloy. In this project, PIs aim to achieve a fundamental understanding of magnetic anisotropy and its control in nanoscale materials through the following activities: (i) Investigate the role of thermal and uniaxial strain, and hydrostatic pressure on magnetic anisotropy in fast laser self-organized nanoparticles. (ii) Investigate the role of external magnetic field on magnetic anisotropy, microstructure, and nucleation and growth. (iii) Develop a phenomenological model of nanoscale magnetism for fast laser self-organized nanostructures. The intellectual merit of this integrated experimental and theoretical activity will stem from the following features: (a) This will be the first definitive work exploring the coupling between fast laser self-organization, thermal strain, external magnetic field and nucleation and growth on nanoscale magnetic anisotropy. This will result in ?nanoparticle phase diagrams? that accurately describe this coupling and the resulting microstructure and magnetic anisotropy. (b) PIs anticipate the design and synthesis of novel magnetic materials that could impact areas of data storage, sensing and information processing. NON-TECHNICAL: The broader impact from this activity will be through commitments to broadening research and education experiences of graduate, undergraduate and high-school students. Specific impacts include: (a) The training of undergraduate and graduate students in a multidisciplinary area comprising materials science, laser-materials processing, condensed matter physics and magnetism. (b) The phenomenological model developed through this activity could permit researchers and innovators to undertake a design and discovery based program to synthesize new materials. (c) Active participation of university and high-school students (through the Pfizer/Solutia STARS program) will help train future scientists in the area of nanoscience, which is of core national interest, and thereby help the US continue its leadership in science and technology.
技术:这项高风险探索性研究的目标是(1)确定激光诱导的自组织在纳米结构和磁各向异性中的外部磁场的作用,以及(2)开发现象学模型,以了解外部依赖效果。 PI将通过综合活动实现这些目标,涉及纳秒激光诱导的自组织,纳米级磁性测量以及这些纳米镜系统中磁化的现象学建模的实验。纳米级磁各向异性的控制促使磁化强度指向所需的方向,可以看作是实现功能性纳米磁性材料的基本要求。到目前为止,磁各向异性主要是通过操纵两个贡献来实现的:(i)各向异性,即具有较大的纵横比结构; (ii)通过晶体学方向或纹理生长通过晶体学方向而各向异性。最近,PIS发现,通过快速激光诱导的自组织产生的近乎近晶的多晶纳米磁体在各个方向上显示出稳定的且尺寸依赖性的磁各向异性。这种行为在所研究的所有磁性材料中普遍存在,包括CO,Ni,Fe和Fe-Co合金。在该项目中,PI通过以下活动来实现对磁各向异性及其在纳米级材料中的控制的基本理解:(i)研究热和单轴菌株和静水压力在快速激光器自组织中的磁各向异性的作用。 (ii)研究外部磁场对磁各向异性,微结构以及成核和生长的作用。 (iii)为快速激光自组织的纳米结构开发了纳米级磁性的现象学模型。这种综合实验和理论活动的智力优点将源于以下特征:(a)这将是探索快速激光自组织,热应变,外部磁场和成核与纳米级磁各向异性上快速激光自组织之间的耦合。这会导致纳米颗粒相图吗?准确地描述了这种耦合以及所得的微结构和磁各向异性。 (b)PI预测新型磁性材料的设计和合成,可能会影响数据存储,传感和信息处理的领域。非技术性:这项活动的更广泛影响将是致力于扩大研究生,本科和高中生的研究和教育经验的承诺。具体影响包括:(a)在包括材料科学,激光材料处理,凝结物理学和磁性的多学科领域的本科生和研究生的培训。 (b)通过这项活动开发的现象学模型可以使研究人员和创新者能够采用基于设计和发现的计划来综合新材料。 (c)大学和高中生的积极参与(通过辉瑞/Solutia明星计划)将帮助培训具有核心国家利益的纳米科学领域的未来科学家,从而帮助美国在科学和技术方面继续领导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramki Kalyanaraman其他文献
Ramki Kalyanaraman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramki Kalyanaraman', 18)}}的其他基金
Improving Career Readiness of STEM Students Through Worksite Visits, Job Shadowing, and Internships during Their Early College Years
通过在大学早期的工作现场参观、工作见习和实习,提高 STEM 学生的职业准备度
- 批准号:
1953762 - 财政年份:2020
- 资助金额:
$ 26.81万 - 项目类别:
Standard Grant
A high-speed optical switch based on transforming the shape of nanomaterial through an interacting magnetic and thermal field
基于通过相互作用的磁场和热场改变纳米材料形状的高速光开关
- 批准号:
1607874 - 财政年份:2016
- 资助金额:
$ 26.81万 - 项目类别:
Standard Grant
Thermally-induced Rayleigh-taylor like instabilities for nanoscale synthesis
用于纳米级合成的热致瑞利泰勒样不稳定性
- 批准号:
1402962 - 财政年份:2014
- 资助金额:
$ 26.81万 - 项目类别:
Standard Grant
EAGER: Thermal pulsing enabled fast and reversible morphology control
EAGER:热脉冲实现快速、可逆的形态控制
- 批准号:
1349507 - 财政年份:2013
- 资助金额:
$ 26.81万 - 项目类别:
Standard Grant
Collaborative:Development of a Hydrogen Discriminating Low Temperature 1-D Nanocomposite Microsensor
合作:开发氢气识别低温一维纳米复合微传感器
- 批准号:
0801781 - 财政年份:2008
- 资助金额:
$ 26.81万 - 项目类别:
Standard Grant
Collaborative Research: Novel 3D Nanocomposites for Optical and Solar Applications: A First Principles Approach to Cost-Effective Design, Nanomanufacturing and Characterization.
合作研究:用于光学和太阳能应用的新型 3D 纳米复合材料:经济高效设计、纳米制造和表征的首要原则方法。
- 批准号:
0757589 - 财政年份:2008
- 资助金额:
$ 26.81万 - 项目类别:
Standard Grant
Magnetic Anisotropy in Nanoscale Systems Produced by Fast Laser Processing: Fundamental Mechanisms, Control and Novel Magnetic Materials
快速激光加工产生的纳米级系统中的磁各向异性:基本机制、控制和新型磁性材料
- 批准号:
0805258 - 财政年份:2008
- 资助金额:
$ 26.81万 - 项目类别:
Continuing Grant
Collaborative:Development of a Hydrogen Discriminating Low Temperature 1-D Nanocomposite Microsensor
合作:开发氢气识别低温一维纳米复合微传感器
- 批准号:
0850574 - 财政年份:2008
- 资助金额:
$ 26.81万 - 项目类别:
Standard Grant
CAREER: Fundamental Studies of Directed Assembly Leading to Innovative Processing of Controlled Thin Film Nanostructures
职业:定向组装的基础研究导致受控薄膜纳米结构的创新加工
- 批准号:
0851597 - 财政年份:2008
- 资助金额:
$ 26.81万 - 项目类别:
Standard Grant
Collaborative Research: Novel 3D Nanocomposites for Optical and Solar Applications: A First Principles Approach to Cost-Effective Design, Nanomanufacturing and Characterization.
合作研究:用于光学和太阳能应用的新型 3D 纳米复合材料:经济高效设计、纳米制造和表征的首要原则方法。
- 批准号:
0855949 - 财政年份:2008
- 资助金额:
$ 26.81万 - 项目类别:
Standard Grant
相似国自然基金
晋冀交界地区地幔包体变形组构与地震波各向异性的关系及对华北克拉通破坏的启示
- 批准号:42304106
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性耦合问题的各向异性高精度有限元方法新模式研究
- 批准号:12301474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
各向异性复合材料微通道内碳氢燃料的流动换热机理研究
- 批准号:52302478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于增材制造吸能点阵材料的各向异性冲击响应研究及调控设计
- 批准号:12302475
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单轴各向异性介质中电磁散射问题快速求解算法
- 批准号:12371394
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Regenerative engineering for complex extremity trauma
复杂肢体创伤的再生工程
- 批准号:
10584227 - 财政年份:2023
- 资助金额:
$ 26.81万 - 项目类别:
Understanding the multiscale basis of solute transport in the cartilage endplate
了解软骨终板中溶质转运的多尺度基础
- 批准号:
10538239 - 财政年份:2022
- 资助金额:
$ 26.81万 - 项目类别:
Understanding the multiscale basis of solute transport in the cartilage endplate
了解软骨终板中溶质转运的多尺度基础
- 批准号:
10701756 - 财政年份:2022
- 资助金额:
$ 26.81万 - 项目类别:
Polymer-Lipid Particles investigated by Magnetic Resonance Spectroscopy
通过磁共振波谱研究聚合物脂质颗粒
- 批准号:
10579675 - 财政年份:2022
- 资助金额:
$ 26.81万 - 项目类别:
NRSA application: Characterizing acetylcholine, noradrenaline, and dopamine diffusion through the extracellular space in three subregions of macaque neocortex
NRSA 应用:表征猕猴新皮质三个分区中乙酰胆碱、去甲肾上腺素和多巴胺通过细胞外空间的扩散
- 批准号:
10568826 - 财政年份:2022
- 资助金额:
$ 26.81万 - 项目类别: