Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
基本信息
- 批准号:RGPIN-2018-04480
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goal of my research program is to develop and analyze stochastic models of interacting populations. A model of an interacting population comprises a set of individuals (people, animals, plants, etc.), a specification of the frequency of interaction between individuals (for example, a social network) and a set of rules for updating the state of individuals when they interact. An example is an epidemic model: there are a set of individuals, each either healthy or infected with the flu. Individuals that live or work close to one another interact more often than individuals that do not. When a healthy person encounters someone with the flu, with some probability, the healthy person contracts the flu. Note that non-interactive events can also be included: for example, a person with the flu may recover on their own after some time. The “stochastic” element means there is some randomness in the model. Thus in the above example, to simulate on a computer you would make a random choice (like flipping a coin) at the moment of interaction to determine whether the healthy person contracts the flu.One way to study these models is by looking at their average behaviour. Even if each separate event is random, as long as we know the probabilities involved, and as long as individuals interact with each other in a fairly uniform way (i.e., the frequencies of interactions are close to the same for all pairs of individuals), when the model includes a large number of individuals it is reasonably straightforward to estimate (without actually running a simulation) what proportion of individuals are in each state at each moment in time. By appealing to these averages we obtain a simpler, so-called deterministic, system. However, the cost of this simplification is that important information concerning random fluctuations is lost. Fortunately, there are mathematical tools that can be used to study the fluctuations; the main idea is to describe the “rate” of these fluctuations, as a function of the system's average state at each moment in time. I intend to use these tools to study the fluctuations of these models directly, without needing recourse to computer simulation.A phenomenon of particular interest is a phase transition, which is a change from one type of global behaviour to another, as parameters of the model are varied. For example, in the epidemic model, the infection can go from dying out quickly to causing a large outbreak, as the transmission rate of the infection is increased. Simple examples have shown that near the transition point, fluctuations tend to dominate the dynamics; in other words, they are most noticeable near a phase transition. If we can obtain a detailed description of these fluctuations, we may be able predict when a species is in danger of extinction, based on observations of its population over time. This is just one of many scenarios that we can study using stochastic models of interacting populations.
我的研究计划的主要目标是开发和分析相互作用的种群的随机模型。一个相互作用的种群模型包括一组个体(人、动物、植物等),个体之间交互频率的规范(例如,社交网络)和一组用于更新个体交互时状态的规则。一个例子是流行病模型:有一组个体,每个人要么健康,要么感染流感。生活或工作在一起的人比不这样做的人更经常互动。当一个健康的人遇到流感患者时,有一定的概率,健康的人会感染流感。请注意,也可以包括非交互式事件:例如,流感患者可能在一段时间后自行恢复。“随机”元素意味着模型中存在一些随机性。因此,在上面的例子中,为了在计算机上进行模拟,你可以在交互的瞬间进行随机选择(就像抛硬币一样),以确定健康的人是否感染了流感。研究这些模型的一种方法是观察他们的平均行为。即使每个单独的事件是随机的,只要我们知道所涉及的概率,只要个体以相当均匀的方式相互作用(即,对于所有成对的个体,交互的频率接近相同),当模型包括大量个体时,合理地直接估计(无需实际运行模拟)在每个时刻处于每个状态的个体的比例。通过诉诸这些平均值,我们得到一个更简单的,所谓的确定性系统。然而,这种简化的代价是丢失了关于随机波动的重要信息。幸运的是,有数学工具可以用来研究波动;主要思想是描述这些波动的“速率”,作为系统在每个时刻的平均状态的函数。我打算使用这些工具来直接研究这些模型的波动,而不需要求助于计算机模拟。一个特别感兴趣的现象是相变,这是一种从一种类型的全局行为到另一种类型的变化,因为模型的参数是变化的。例如,在流行病模型中,随着感染传播率的增加,感染可以从迅速消失到引起大规模爆发。简单的例子表明,在相变点附近,波动往往主导动力学;换句话说,它们在相变附近最明显。如果我们能够获得这些波动的详细描述,我们也许能够根据一段时间内对其种群的观察来预测一个物种何时面临灭绝的危险。这只是我们可以使用相互作用种群的随机模型研究的许多场景之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Foxall, Eric其他文献
Explicit construction of chaotic attractors in Glass networks
- DOI:
10.1016/j.chaos.2012.02.018 - 发表时间:
2012-05-01 - 期刊:
- 影响因子:7.8
- 作者:
Edwards, Roderick;Farcot, Etienne;Foxall, Eric - 通讯作者:
Foxall, Eric
A scaling law for random walks on networks.
- DOI:
10.1038/ncomms6121 - 发表时间:
2014-10-14 - 期刊:
- 影响因子:16.6
- 作者:
Perkins, Theodore J.;Foxall, Eric;Glass, Leon;Edwards, Roderick - 通讯作者:
Edwards, Roderick
Foxall, Eric的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Foxall, Eric', 18)}}的其他基金
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
DGECR-2018-00299 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Launch Supplement
Interacting Particle Systems and the Effect of Social Dynamics on the Spread of an Infection
相互作用的粒子系统和社会动力学对感染传播的影响
- 批准号:
470692-2015 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Postdoctoral Fellowships
Effect of random inputs on the dynamics and bifurcations of small networks of neurons
随机输入对神经元小网络动态和分叉的影响
- 批准号:
443600-2013 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Postgraduate Scholarships - Doctoral
Effect of random inputs on the dynamics and bifurcations of small networks of neurons
随机输入对神经元小网络动态和分叉的影响
- 批准号:
443600-2013 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Postgraduate Scholarships - Doctoral
Visual voice: gestural control of vocal expression
视觉语音:声音表达的手势控制
- 批准号:
368727-2008 - 财政年份:2008
- 资助金额:
$ 1.53万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
- 批准号:19ZR1415200
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
人大肠癌SP细胞干性表型和基因型分析
- 批准号:81101870
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
不同栽培环境条件下不同基因型牡丹根部细菌种群多样性特征
- 批准号:31070617
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
孤独症全基因组关联第二阶段研究
- 批准号:81071110
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
脑肿瘤干细胞新的生物标记筛检及其功能研究
- 批准号:30772243
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
濒危植物翅果油树Meta-population及其形成机理的研究
- 批准号:30470296
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
DGECR-2018-00299 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Launch Supplement
Interacting stochastic (partial) differential equations, combinatorial stochastic processes and duality in spatial population dynamics
空间群体动态中的相互作用随机(偏)微分方程、组合随机过程和对偶性
- 批准号:
221756484 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Priority Programmes
Auditory Processing of Stochastic FM in Relationship to Speech Perception
随机调频的听觉处理与语音感知的关系
- 批准号:
8178587 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Study on stochastic models of population genetics by means of the theories of stochastic processes
利用随机过程理论研究群体遗传学的随机模型
- 批准号:
21540143 - 财政年份:2009
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Branching Stochastic Process Modeling of Human Plasma Cell Differentiation
人类浆细胞分化的分支随机过程建模
- 批准号:
7614413 - 财政年份:2007
- 资助金额:
$ 1.53万 - 项目类别:
Branching Stochastic Process Modeling of Human Plasma Cell Differentiation
人类浆细胞分化的分支随机过程建模
- 批准号:
7422338 - 财政年份:2007
- 资助金额:
$ 1.53万 - 项目类别: