Projective Structures in Teichmuller Theory and Kleinian Groups
Teichmuller 理论和 Kleinian 群中的射影结构
基本信息
- 批准号:0805525
- 负责人:
- 金额:$ 15.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0805525Principal Investigator: David DumasThe principal investigator will explore complex projectivestructures on surfaces and their applications to Teichmullertheory, Kleinian groups, and hyperbolic 3-manifolds. The spaceof all complex projective structures on a fixed surface is acontractible manifold which has two natural but very differentcoordinate systems: A classical analytic approach uses theSchwarzian derivative to identify the moduli space with aholomorphic vector bundle over Teichmuller space, while a morerecent geometric approach builds each projective structure fromhyperbolic and Euclidean pieces in a process known as grafting.The major goals of this project are to understand the relationbetween these two coordinate systems (both theoretically andusing computer experiments), and to use that understanding tostudy Teichmuller spaces and deformations of Kleinian groups.The PI will also explore ways in which the techniques used tostudy complex projective structures could be adapted to otherlow-dimensional geometric structures, such as real projectivestructures.The study of the shapes and configurations of geometric objectshas applications to diverse areas of science and engineering,from understanding the folding of proteins or the formation ofgalaxies to programming autonomous robots that must navigatecomplex terrain. In a mathematical abstraction of this type ofproblem, one studies the space of all possible shapes, or "modulispace", of a geometric object. This project focuses on themoduli space of complex projective Riemann surfaces, a class ofgeometric objects that encode information about 3-dimensionalspaces (hyperbolic manifolds) in 2-dimensional form. Throughboth theoretical study and computational experiments, the PI willdevelop new tools for analyzing these structures, enhance theconnections between 2- and 3-dimensional geometry, and expandapplications of these structures in related fields. The projectwill also produce computer images of the moduli space, displayingits rich structure and complexity in a way that can beappreciated by scientists and non-scientists alike.
项目编号:dms -0805525首席研究员:David dumas首席研究员将探索表面上的复杂投影结构及其在teichmuller理论、Kleinian群和双曲3-流形中的应用。固定曲面上所有复杂射影结构的空间都是可缩流形,具有两种自然但非常不同的坐标系:经典的解析方法使用施瓦兹导数在Teichmuller空间上识别具有自纯向量束的模空间,而最近的几何方法通过双曲和欧几里得块在称为嫁接的过程中构建每个射影结构。这个项目的主要目标是理解这两个坐标系之间的关系(理论上和使用计算机实验),并利用这种理解来研究Teichmuller空间和Kleinian群的变形。PI还将探索如何将用于研究复杂投影结构的技术应用于其他低维几何结构,如真实的投影结构。对几何物体的形状和结构的研究已经应用于科学和工程的各个领域,从理解蛋白质的折叠或星系的形成到编程必须在复杂地形中导航的自主机器人。在这类问题的数学抽象中,人们研究一个几何对象的所有可能形状的空间,或“模空间”。该项目重点研究复杂投影黎曼曲面的模空间,黎曼曲面是一类以二维形式编码有关三维空间(双曲流形)信息的几何对象。通过理论研究和计算实验,PI将开发新的工具来分析这些结构,增强二维和三维几何之间的联系,并扩大这些结构在相关领域的应用。该项目还将产生模空间的计算机图像,以一种科学家和非科学家都能欣赏的方式显示其丰富的结构和复杂性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Dumas其他文献
Uses and Misuses of Exploratory Factor Analyses: An Example from the French-Canadian Short Version of the Questionnaire for Teacher Interaction (QTI)
探索性因素分析的使用和误用:法国-加拿大短版教师互动问卷 (QTI) 的示例
- DOI:
10.34056/aujef.543803 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ibtissem Ben Alaya;David Dumas;Vincent Grenon;Jean;Naila Bali - 通讯作者:
Naila Bali
Chromosomal rearrangements and evolution of recombination: comparison of chiasma distribution patterns in standard and robertsonian populations of the house mouse.
染色体重排和重组的进化:家鼠标准群体和罗伯逊群体中交叉分布模式的比较。
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:3.3
- 作者:
David Dumas;J. Britton - 通讯作者:
J. Britton
Optimizing photovoltaic systems to decarbonize residential arctic buildings considering real consumption data and temporal mismatch
- DOI:
10.1016/j.solener.2024.112560 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
David Dumas;Louis Gosselin - 通讯作者:
Louis Gosselin
David Dumas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Dumas', 18)}}的其他基金
Geometry and Dynamics of Holomorphic Geometric Structures
全纯几何结构的几何与动力学
- 批准号:
2203358 - 财政年份:2022
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant
The 2018 Graduate Student Topology and Geometry Conference
2018年研究生拓扑与几何会议
- 批准号:
1822457 - 财政年份:2018
- 资助金额:
$ 15.28万 - 项目类别:
Standard Grant
Character Varieties and Locally Homogeneous Geometric Structures
特征多样性和局部均匀的几何结构
- 批准号:
1709877 - 财政年份:2017
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant
CAREER: Complex Projective Structures, Teichmuller Theory, and Character Varieties
职业:复杂射影结构、Teichmuller 理论和性格多样性
- 批准号:
0952869 - 财政年份:2010
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Geometric Structures, Character Varieties, and Higher Teichmuller Theory
职业:几何结构、特征多样性和高等泰希米勒理论
- 批准号:
1848346 - 财政年份:2019
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
- 批准号:
1564362 - 财政年份:2016
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
- 批准号:
1564373 - 财政年份:2016
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
- 批准号:
1564410 - 财政年份:2016
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Geometric Structures of Higher Teichmuller Spaces
FRG:合作研究:高等Teichmuller空间的几何结构
- 批准号:
1564374 - 财政年份:2016
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant
Research on the Teichmuller spaces of fractal structures
分形结构Teichmuller空间的研究
- 批准号:
15K04925 - 财政年份:2015
- 资助金额:
$ 15.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Teichmuller modular groups through flat structures
基于扁平结构的Teichmuller模群研究
- 批准号:
26400151 - 财政年份:2014
- 资助金额:
$ 15.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Complex Projective Structures, Teichmuller Theory, and Character Varieties
职业:复杂射影结构、Teichmuller 理论和性格多样性
- 批准号:
0952869 - 财政年份:2010
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant
Teichmuller spaces of symmetric structures and the rigidity and fixed-point problems of quasiconformal mapping class groups
对称结构的Teichmuller空间与拟共形映射类群的刚性和不动点问题
- 批准号:
20340030 - 财政年份:2008
- 资助金额:
$ 15.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of structures of infinite dimensional Teichmuller spaces and complex analytic moduli spaces
无限维Teichmuller空间和复解析模空间的结构分析
- 批准号:
20740072 - 财政年份:2008
- 资助金额:
$ 15.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




