Geometry and Dynamics of Holomorphic Geometric Structures
全纯几何结构的几何与动力学
基本信息
- 批准号:2203358
- 负责人:
- 金额:$ 42.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project involves basic research in the mathematical sciences, focusing on understanding a class of geometric objects using novel techniques from related areas of mathematics (such as complex analysis). At its core, the project studies moduli spaces---objects that describe all of the possible shapes or configurations of a geometric or mechanical system. Such spaces are fundamental to many parts of mathematics, physics, engineering, and computer science, including both theoretical and applied areas. The basic research in this project will bring new insights in the use of complex analysis to study moduli spaces of geometric structures. The project's mathematical visualization elements will provide striking images and animations that can be used to illustrate the results of mathematical research to a broad audience. Through its undergraduate research components, the project will also aid in the development of a mathematically-skilled workforce and a stronger applicant pool for graduate education in the mathematical sciences.The space of marked compact hyperbolic surfaces of a given genus can be identified with a connected component of the space of representations of a surface group into the Lie group SL(2,R). The class of Anosov representations of a discrete group into a semisimple Lie group has received much attention in recent years as a potential generalization of the SL(2,R)-representations arising from hyperbolic geometry. While it has already proved to be quite rich, this higher-rank story remains incomplete. This project will focus on foundational work on the complex-analytic side of this so-called "higher Teichmueller theory". Focusing specifically on the complex-analytic aspects allows the use of additional methods (e.g. pluripotential theory) and the incorporation of new ideas (e.g. opers), and is expected to enable more progress than would be possible when considering arbitrary semisimple groups. The project will incorporate undergraduate research supervision as a significant component. The PI will also develop mathematical visualizations and software tools for research and expository purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及数学科学的基础研究,重点是使用数学相关领域(如复分析)的新技术来理解一类几何对象。 在其核心,该项目研究模空间-描述几何或机械系统的所有可能形状或配置的对象。 这样的空间是数学、物理、工程和计算机科学的许多部分的基础,包括理论和应用领域。 本计画的基础研究将为复分析在几何结构模空间的应用带来新的见解。 该项目的数学可视化元素将提供引人注目的图像和动画,可用于向广大观众展示数学研究的结果。 通过其本科研究部分,该项目还将帮助发展一个熟练的劳动力和更强大的申请人库的研究生教育在数学科学。空间的标记紧凑双曲曲面的一个给定的亏格可以识别的空间的连通分量的表示的表面群到李群SL(2,R)。离散群到半单李群的Anosov表示类作为双曲几何中SL(2,R)-表示类的潜在推广,近年来受到了广泛的关注。 虽然它已经被证明是相当丰富的,这个更高层次的故事仍然不完整。 这个项目将集中在这个所谓的“更高的Teichmueller理论”的复分析方面的基础工作。专注于复分析方面允许使用额外的方法(例如多能理论)和纳入新的想法(例如opers),并预计将使更多的进展比考虑任意半单群时可能。 该项目将把本科生研究监督作为一个重要组成部分。 PI还将开发数学可视化和软件工具,用于研究和临时目的。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Dumas其他文献
Uses and Misuses of Exploratory Factor Analyses: An Example from the French-Canadian Short Version of the Questionnaire for Teacher Interaction (QTI)
探索性因素分析的使用和误用:法国-加拿大短版教师互动问卷 (QTI) 的示例
- DOI:
10.34056/aujef.543803 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ibtissem Ben Alaya;David Dumas;Vincent Grenon;Jean;Naila Bali - 通讯作者:
Naila Bali
Chromosomal rearrangements and evolution of recombination: comparison of chiasma distribution patterns in standard and robertsonian populations of the house mouse.
染色体重排和重组的进化:家鼠标准群体和罗伯逊群体中交叉分布模式的比较。
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:3.3
- 作者:
David Dumas;J. Britton - 通讯作者:
J. Britton
Optimizing photovoltaic systems to decarbonize residential arctic buildings considering real consumption data and temporal mismatch
- DOI:
10.1016/j.solener.2024.112560 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
David Dumas;Louis Gosselin - 通讯作者:
Louis Gosselin
David Dumas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Dumas', 18)}}的其他基金
The 2018 Graduate Student Topology and Geometry Conference
2018年研究生拓扑与几何会议
- 批准号:
1822457 - 财政年份:2018
- 资助金额:
$ 42.65万 - 项目类别:
Standard Grant
Character Varieties and Locally Homogeneous Geometric Structures
特征多样性和局部均匀的几何结构
- 批准号:
1709877 - 财政年份:2017
- 资助金额:
$ 42.65万 - 项目类别:
Continuing Grant
CAREER: Complex Projective Structures, Teichmuller Theory, and Character Varieties
职业:复杂射影结构、Teichmuller 理论和性格多样性
- 批准号:
0952869 - 财政年份:2010
- 资助金额:
$ 42.65万 - 项目类别:
Continuing Grant
Projective Structures in Teichmuller Theory and Kleinian Groups
Teichmuller 理论和 Kleinian 群中的射影结构
- 批准号:
0805525 - 财政年份:2008
- 资助金额:
$ 42.65万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
- 批准号:
2247613 - 财政年份:2023
- 资助金额:
$ 42.65万 - 项目类别:
Standard Grant
Themes in Holomorphic Low-Dimensional Dynamics
全纯低维动力学主题
- 批准号:
1901357 - 财政年份:2019
- 资助金额:
$ 42.65万 - 项目类别:
Standard Grant
Holomorphic Curves in Embeddings and Dynamics
嵌入和动力学中的全纯曲线
- 批准号:
1711976 - 财政年份:2017
- 资助金额:
$ 42.65万 - 项目类别:
Standard Grant
Holomorphic Dynamics in one and several variables
一变量和多变量的全纯动力学
- 批准号:
1505342 - 财政年份:2015
- 资助金额:
$ 42.65万 - 项目类别:
Standard Grant
Rigidity and Small Divisors in Holomorphic Dynamics
全纯动力学中的刚度和小因子
- 批准号:
EP/M01746X/1 - 财政年份:2015
- 资助金额:
$ 42.65万 - 项目类别:
Fellowship
Holomorphic Dynamics in One and Several Variables
一变量和多变量的全纯动力学
- 批准号:
1408261 - 财政年份:2014
- 资助金额:
$ 42.65万 - 项目类别:
Standard Grant
Bifurcation in parameter spaces of holomorphic and anti-holomorphic dynamics and its visualization
全纯和反全纯动力学参数空间的分岔及其可视化
- 批准号:
26400115 - 财政年份:2014
- 资助金额:
$ 42.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pseudo-holomorphic curves and periodic orbits in Hamiltonian dynamics
哈密顿动力学中的伪全纯曲线和周期轨道
- 批准号:
25800041 - 财政年份:2013
- 资助金额:
$ 42.65万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Symbolic Methods in Holomorphic Dynamics
全纯动力学中的符号方法
- 批准号:
220343398 - 财政年份:2012
- 资助金额:
$ 42.65万 - 项目类别:
Research Grants