Algebraic Structures of Mathematical Physics

数学物理的代数结构

基本信息

  • 批准号:
    0805785
  • 负责人:
  • 金额:
    $ 14.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0805785 Principal Investigator: Alexander A. VoronovThe goal of the project is to solve a number of importantproblems in the rapidly developing fields of Topological FieldTheory (TFT), Symplectic Field Theory (SFT), and Gromov-Wittentheory. The first part of the project will span from highercategory theory, to cobordisms and to quantum field theories. Theplan is to place cobordisms of manifolds with corners within anappropriate n-category framework and describe TFTs as n-functorsfrom the n-category of cobordisms to that of n-vector spaces, aswell as show that physical models, such as gauge(Wess-Zumino-Witten), Yang-Mills, Chern-Simons, Seiberg-Wittentheories, and sigma-model may be described as such higherTFTs. The second part of the project consists in bringingtogether algebraic geometric and symplectic methods to constructa full solution to the so-called Quantum Master Equation inGromov-Witten theory. This equation describes the topology of themoduli spaces of holomorphic curves and relevant algebraicstructures, providing important invariants in symplectic andalgebraic geometry. The third part of the project aims at liftingGromov-Witten theory to the (Floer) chain level and developing acombinatorial version of Gromov-Witten theory, thus bridging theareas of enumerative algebraic geometry, symplectic Floer theory,and graph homology. The last, SFT part of the project will resultin constructing a new compactification of the moduli space ofRiemann surfaces, which would govern the algebraic operations andinvariants arising in SFT. This compactification will be an SFTanalogue of the Deligne-Mumford compactification relevant toGromov-Witten theory.The project aims at discovering and studying new algebraicstructures in topology suggested or motivated by mathematicalphysics, in particular, string theory, Symplectic Field Theory,and Gromov-Witten theory. Another long-term goal is to build abridge between several mathematical cultures working on problemsrelated to mathematical physics. These cultures includealgebraists, algebraic topologists, symplectic geometers,algebraic geometers, and geometric topologists, to name afew. The algebraic structures is a mathematical reincarnation ofsuch fundamental structures of physical theories as correlatorsand relations between them (Ward identities). Understanding thisstructure is crucial for understanding the physical theory. Fromthe point of view of mathematics, the project leads to newmathematical ideas, new algebra, geometry, and topology,motivated by physics.
摘要奖:DMS-0805785 主要研究者:亚历山大A. Voronov该项目的目标是解决拓扑场论(TFT),辛场论(SFT)和Gromov-Witten理论等快速发展领域的一些重要问题。该项目的第一部分将跨越从更高的范畴理论,以cobordisms和量子场论。该计划是放置cobordisms的流形与角在一个适当的n-范畴的框架和描述TFT作为n-functorsfrom的n-范畴的cobordisms的n-向量空间,以及显示,物理模型,如规范(Wess-Zumino-维滕),杨-米尔斯,陈-西蒙斯,塞伯格-威滕理论,和西格玛模型可以描述为这样的higherTFT。该项目的第二部分包括bringingtogether代数几何和辛的方法来构造一个完整的解决方案,所谓的量子主方程在Gromov-Witten理论。这个方程描述了全纯曲线的模空间的拓扑和相关的代数结构,在辛几何和代数几何中提供了重要的不变量。第三部分的工作是将Gromov-Witten理论提升到(Floer)链的层次,发展Gromov-Witten理论的组合形式,从而在枚举代数几何、辛Floer理论和图同调等领域建立一个桥梁。最后,SFT部分的项目将导致建立一个新的紧化的模空间的黎曼曲面,这将支配代数运算和不变量中出现的SFT。 这个紧化将是与Gromov-Witten理论相关的Deligne-Mumford紧化的一个SF Tansomer.The项目旨在发现和研究由物理学,特别是弦理论,辛场论和Gromov-Witten理论提出或激发的拓扑学中的新代数结构。 另一个长期目标是在几种数学文化之间建立桥梁,解决与数学物理有关的问题。这些文化包括gebraists,代数拓扑学家,辛几何学家,代数几何学家,几何拓扑学家,仅举几例。代数结构是物理学理论的基本结构,如算符和它们之间的关系(沃德恒等式)的数学再现。理解这种结构对于理解物理理论至关重要。从数学的角度来看,该项目导致了新的数学思想,新的代数,几何和拓扑,物理的动机。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Voronov其他文献

PunFields at SemEval-2018 Task 3: Detecting Irony by Tools of Humor Analysis
SemEval-2018 上的 PunFields 任务 3:通过幽默分析工具检测反讽
  • DOI:
    10.18653/v1/s18-1088
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elena Mikhalkova;Y. Karyakin;Alexander Voronov;Dmitry Grigoriev;Artem Leoznov
  • 通讯作者:
    Artem Leoznov

Alexander Voronov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Voronov', 18)}}的其他基金

Algebraic Structures in Topology
拓扑中的代数结构
  • 批准号:
    0227974
  • 财政年份:
    2002
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Algebraic Structures in Topology
拓扑中的代数结构
  • 批准号:
    0104004
  • 财政年份:
    2001
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Operads and Homotopy Algebra
运算和同伦代数
  • 批准号:
    9971434
  • 财政年份:
    1999
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Higher Operations on Hochschild Cohomology
数学科学:Hochschild 上同调的高级运算
  • 批准号:
    9402076
  • 财政年份:
    1995
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant

相似海外基金

Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
  • 批准号:
    23K03033
  • 财政年份:
    2023
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic structures in mathematical physics and category theory
数学物理和范畴论中的代数结构
  • 批准号:
    2435987
  • 财政年份:
    2020
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Studentship
Algebraic Structures in Mathematical Physics and Their Applications
数学物理中的代数结构及其应用
  • 批准号:
    DP0208808
  • 财政年份:
    2002
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Projects
Algebraic Structures in Mathematical Physics and Their Applications
数学物理中的代数结构及其应用
  • 批准号:
    ARC : DP0208808
  • 财政年份:
    2002
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Projects
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
  • 批准号:
    9625511
  • 财政年份:
    1996
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Special Semester in Real Algebraic Geometry and Ordered Structures; January 11 to May 16, 1996; Baton Rouge, Louisiana
数学科学:实代数几何和有序结构特别学期;
  • 批准号:
    9528094
  • 财政年份:
    1996
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Smooth Structures of Algebraic Surfaces
数学科学:代数曲面的光滑结构
  • 批准号:
    9400729
  • 财政年份:
    1994
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
  • 批准号:
    9304247
  • 财政年份:
    1993
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Hypergeometric Functions
数学科学:与超几何函数相关的代数、几何和组合结构
  • 批准号:
    9104867
  • 财政年份:
    1991
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Workshop-Conference in Ordered Algebraic Structures
数学科学:有序代数结构研讨会
  • 批准号:
    8802636
  • 财政年份:
    1988
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了