Algebraic structures in mathematical physics and category theory
数学物理和范畴论中的代数结构
基本信息
- 批准号:2435987
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symmetries in Nature have fascinated the mankind ever since the beginning of civilization, since they help us understanding its most fundamental laws. An easy instance is rotational symmetry, invariance of a phenomenon if we observe it independent of the viewing angle. The more uncommon a symmetry is, the more interesting it is from a physics point of view and more exotic and original mathematical structures describe them. In the last decades there has been a substantial effort to understand those related to conformal symmetry, a symmetry particularly rare which preserves angles (but not e.g. sizes). These advances have constituted an active, rich and cutting-edge field of world-wide research. This PhD project will study systematic ways of detecting and classifying certain algebraic structures arising in this setting and describing certain physical entities, in particular algebra objects in modular tensor categories obtained from representations of vertex operator algebras. These objects have a beautiful physical description and are connected to other mathematical formalizations of physical theories like e.g. r-spin topological field theories.
自然界中的对称性自从文明开始以来就吸引着人类,因为它们帮助我们理解其最基本的规律。一个简单的例子是旋转对称性,如果我们观察它与视角无关,则现象不变性。一个对称性越不常见,从物理学的角度看它就越有趣,描述它们的数学结构也就越奇特和新颖。在过去的几十年里,人们一直在努力理解那些与共形对称有关的对称性,这种对称性特别罕见,它保留了角度(但不是例如大小)。这些进展构成了一个活跃、丰富和前沿的世界性研究领域。这个博士项目将研究系统的方法来检测和分类在这种设置中产生的某些代数结构,并描述某些物理实体,特别是从顶点算子代数的表示中获得的模张量类别中的代数对象。这些对象有一个美丽的物理描述,并连接到其他数学形式的物理理论,如r-自旋拓扑场论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
- 批准号:60672101
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
新型嘧啶并三环化合物的合成研究
- 批准号:20572032
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
磁层重联区相干结构动力学过程的观测研究
- 批准号:40574067
- 批准年份:2005
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
- 批准号:
23K03033 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Structures of Mathematical Physics
数学物理的代数结构
- 批准号:
0805785 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Advances in Logics by Algebraic Methods
代数方法的逻辑进展
- 批准号:
17540109 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Structures in Mathematical Physics and Their Applications
数学物理中的代数结构及其应用
- 批准号:
DP0208808 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Discovery Projects
Algebraic Structures in Mathematical Physics and Their Applications
数学物理中的代数结构及其应用
- 批准号:
ARC : DP0208808 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Discovery Projects
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
- 批准号:
9625511 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Special Semester in Real Algebraic Geometry and Ordered Structures; January 11 to May 16, 1996; Baton Rouge, Louisiana
数学科学:实代数几何和有序结构特别学期;
- 批准号:
9528094 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Smooth Structures of Algebraic Surfaces
数学科学:代数曲面的光滑结构
- 批准号:
9400729 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
- 批准号:
9304247 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Hypergeometric Functions
数学科学:与超几何函数相关的代数、几何和组合结构
- 批准号:
9104867 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Standard Grant