Modeling, Analysis, Computation and Experiments of Two-Component Bose-Einstein Condensates
二元玻色-爱因斯坦凝聚体的建模、分析、计算和实验
基本信息
- 批准号:0806762
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CarreteroDMS-0806762 The goal of the project is to shed light on two-componentBose-Einstein Condensates (BECs) and how they differ from theirsingle-component counterparts. The investigator and hiscolleagues aim to redefine the way in which modeling and analysisare developed in such systems by introducing some fundamentalphysical processes that were not included in presently employedmodels. More specifically, the team of researchers plans to: (a) develop a new model for two-component BECs, by augmentingexisting models to account for processes such as inter-atomicinteraction losses and higher-order magnetic (Zeeman) effects; (b) benchmark the model, by testing it in a variety ofsituations where the total number of atoms or ratio of atomschanges between the two components and comparing it against thenewly developed partial differential equation model; (c) analyze the model mathematically by means of Galerkinprojections and Lyapunov-Schmidt reductions to study finitedimensional approximations of the dynamics, whereby the existenceand stability of solutions are studied and control strategies areemployed to stabilize potentially unstable solutionconfigurations; (d) produce a computational platform that enables the study ofexistence, stability and nonlinear dynamics of multi-component,high-dimensional variants of the nonlinear Schrodinger equationsthat are the key mathematical ingredient in the modeling of suchatomic systems. In the process, spatially/temporally adaptiveand/or parallel integrators are produced for time-steppingpurposes and iterative methods are developed in order to analyzethe linear stability problem around steady state solutions. This project presents a route to systematically quantify thequantum dynamics at the lowest temperatures that arise in theUniverse, namely in the recently created new form of matterrepresented by Bose-Einstein condensates (whose formation wasawarded with the 2001 Nobel prize in Physics and whoseproperties, such as superfluidity, were intimately connected tothe Nobel prize in Physics in 2003). The investigator and hiscolleagues form an interdisciplinary team to directly monitorthis state of matter in the laboratory, to model the system atthe physical level, to explore the resulting features at themathematical level, and finally to fully visualize thethree-dimensional dynamics of such complex systems. A continuousfeedback between all the above stages is intended to ascertainnot only a qualitative but also a quantitative understanding ofsuch atomic physics systems, such as gases of rubidium, sodiumand other alkali vapors. The multi-species systems under studypresent a wealth of opportunities for future applications,ranging from the controllable formation of ultracold microscopicpatterns (in a form of "quantum lithography") to the realizationof quantum gates and switches, that, in turn, aim towards thelonger term goal of enabling quantum computation.
CarreteroDMS-0806762 该项目的目标是阐明双组分玻色-爱因斯坦凝聚体(BEC)以及它们与单组分对应物的区别。 调查员和他的同事们的目标是重新定义的方式,其中建模和分析是通过引入一些基本的物理过程,不包括在目前employedmodels在这样的系统开发。 更具体地说,研究小组计划:(a)通过增强现有模型来解释诸如原子间相互作用损失和高阶磁(塞曼)效应等过程,为双组分BEC开发一个新模型;(B)对模型进行基准测试,通过在两种成分之间原子总数或原子比变化的各种情况下进行测试,并将其与新开发的部分微分方程模型;(c)通过Galerkin投影和Lyapunov-Schmidt约化对模型进行数学分析,以研究动力学的有限维近似,从而研究解的存在性和稳定性,并采用控制策略来稳定可能不稳定的解构型;(d)建立一个计算平台,以便研究多组分的存在性、稳定性和非线性动力学,高维变量的非线性薛定谔方程是关键的数学成分在建模suchatomic系统。 在这个过程中,空间/时间自适应和/或并行积分器产生的时间steppingpurposes和迭代方法的开发,以分析周围的稳态解的线性稳定性问题。 该项目提出了一条路线,以系统地量化宇宙中出现的最低温度下的量子动力学,即最近创造的以玻色-爱因斯坦凝聚为代表的新形式的物质(其形成获得了2001年诺贝尔物理学奖,其性质,如超流性,与2003年诺贝尔物理学奖密切相关)。 研究人员和他的同事组成了一个跨学科的团队,在实验室中直接监测物质的这种状态,在物理层面上对系统进行建模,在数学层面上探索由此产生的特征,最后完全可视化这种复杂系统的三维动力学。 在所有上述阶段之间的连续反馈旨在确定不仅定性而且定量地理解这样的原子物理系统,例如铷、钠和其他碱蒸气的气体。 研究中的多物种系统为未来的应用提供了丰富的机会,从可控形成超冷微观图案(以“量子光刻”的形式)到实现量子门和开关,反过来,旨在实现量子计算的长期目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Carretero其他文献
Ricardo Carretero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Carretero', 18)}}的其他基金
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
- 批准号:
2110038 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
OP: Collaborative Research: Non-Hamiltonian Wave Dynamics in Atomic & Optical Models
OP:合作研究:原子中的非哈密尔顿波动力学
- 批准号:
1603058 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: New Directions in Atomic Bose-Einstein Condensates
合作研究:原子玻色-爱因斯坦凝聚态的新方向
- 批准号:
1309035 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Topological excitations in Bose-Einstein condensates: Existence, stability, dynamics, and interactions
玻色-爱因斯坦凝聚中的拓扑激发:存在性、稳定性、动力学和相互作用
- 批准号:
0505663 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306992 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306991 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
- 批准号:
2212565 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
- 批准号:
2204240 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
- 批准号:
RGPIN-2016-05306 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Mathematical Analysis, and Computation of Multiscale Systems
多尺度系统的建模、数学分析和计算
- 批准号:
DP200103097 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
- 批准号:
RGPIN-2016-05306 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
- 批准号:
2006586 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
- 批准号:
RGPIN-2016-05306 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Analysis, and Computation of 2D Layered Materials
二维层状材料的建模、分析和计算
- 批准号:
1906129 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant