Short Memory in Long Memory Time Series

长记忆时间序列中的短记忆

基本信息

  • 批准号:
    1107225
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Asymptotic properties and inference procedures for long memory processes have been extensively studied in the last 30 years. However, when a long memory process involves short memory components, statistical inference methods are insufficient and need to be substantially enhanced. Specifically, if a fractionally integrated autoregressive moving-average (ARFIMA) process contains autoregressive moving-average (ARMA) components, currently applied statistical methods frequently produce biases that result in significant inaccuracies. Accordingly, there is a need for a more accurate investigation of short memory components pertinent in the ARFIMA process. This project considers several statistical problems in time series settings where the data has both long memory and short memory characteristics. The statistical problems considered include: (1) testing to determine if a long memory time series has short memory characteristics; (2) developing stochastic parameter regression models of long memory and short memory characteristics with a simpler autocorrelation structure; and (3) assessing biases in the sample autocorrelations and cross-correlations for long memory time series with short memory characteristics.Studying long memory time series with short memory components is very important, as they are frequently observed in real-world contexts, such as stock returns and volatilities, inflation rates, temperatures, and river levels. The project aims to develop accurate statistical models and inference methods to analyze such time series. The development of this research will: (1) advance the theory and methods of long memory processes; (2) help the public better understand global warming issues with the proposed models and methods; and (3) benefit practitioners to use the research outcomes in their disciplines. In addition, the investigator will contribute to the launch of Boise State's mathematical and statistical consulting center. The center will be a hub of applied mathematics and statistics fused with other sciences, serving Boise and the State of Idaho where no such facility is currently available.
在过去的30年里,长记忆过程的渐近性质和推理过程得到了广泛的研究。 然而,当长记忆过程涉及短记忆成分时,统计推断方法是不够的,需要大大增强。 具体而言,如果分数积分自回归移动平均(ARFIMA)过程包含自回归移动平均(阿尔马)分量,则当前应用的统计方法经常产生导致显著不准确的偏差。 因此,需要更准确地调查ARFIMA过程中相关的短记忆成分。 这个项目考虑了时间序列设置中的几个统计问题,其中数据具有长记忆和短记忆特性。 所考虑的统计问题包括:(1)检验长记忆时间序列是否具有短记忆特征:(2)建立具有简单自相关结构的长记忆和短记忆特征的随机参数回归模型;以及(3)评估样本自相关和交叉相关中的偏差。具有短记忆特征的长记忆时间序列的相关性。研究具有短记忆成分的长记忆时间序列非常重要,因为它们经常在现实世界中观察到,例如股票收益率和波动率、通货膨胀率、温度和河流水位。 该项目旨在开发准确的统计模型和推理方法,以分析此类时间序列。 本研究的发展将:(1)推进长记忆过程的理论和方法;(2)帮助公众更好地理解全球变暖问题与建议的模型和方法;(3)有利于从业人员在他们的学科中使用研究成果。 此外,调查员将有助于推出博伊西国家的数学和统计咨询中心。 该中心将成为应用数学和统计与其他科学融合的中心,为博伊西和爱达荷州提供服务,目前还没有这样的设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaechoul Lee其他文献

An efficient generalized least squares algorithm for periodic trended regression with autoregressive errors
  • DOI:
    10.1007/s11075-015-9984-7
  • 发表时间:
    2015-04-14
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Jaechoul Lee;Anthony Dini;William Negri
  • 通讯作者:
    William Negri
Trend and Return Level of Extreme Snow Events in New York City
纽约市极端降雪事件的趋势和回归水平
  • DOI:
    10.1080/00031305.2019.1592780
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mintaek Lee;Jaechoul Lee
  • 通讯作者:
    Jaechoul Lee
First‐order bias correction for fractionally integrated time series
分数阶积分时间序列的一阶偏差校正
  • DOI:
    10.1002/cjs.10022
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaechoul Lee;Kyungduk Ko
  • 通讯作者:
    Kyungduk Ko

Jaechoul Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

CREB在杏仁核神经环路memory allocation中的作用和机制研究
  • 批准号:
    31171079
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
面向多核处理器的硬软件协作Transactional Memory系统结构
  • 批准号:
    60873053
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Power-Efficient Long Short-term Memory
高能效长短期记忆
  • 批准号:
    2221174
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
"Establishment of a long short-term memory (LSTM) model using the Hilbert-Huang transform (HHT) to forecast the current outputs of biophotovoltaic dev
“使用希尔伯特-黄变换(HHT)建立长短期记忆(LSTM)模型来预测生物光伏开发的当前输出
  • 批准号:
    2801696
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic risk assessment of hazardous process operations using the long short-term memory (LSTM) neural network and Bayesian network (BN)
使用长短期记忆(LSTM)神经网络和贝叶斯网络(BN)对危险过程操作进行动态风险评估
  • 批准号:
    547892-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Learning State-Based Behaviour Using Long Short-Term Memory
使用长短期记忆学习基于状态的行为
  • 批准号:
    552765-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Dynamic risk assessment of hazardous process operations using the long short-term memory (LSTM) neural network and Bayesian network (BN)
使用长短期记忆 (LSTM) 神经网络和贝叶斯网络 (BN) 对危险过程操作进行动态风险评估
  • 批准号:
    547892-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
A multimodal study of delay activity contributions to short and long term memory
延迟活动对短期和长期记忆贡献的多模式研究
  • 批准号:
    9893025
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
A multimodal study of delay activity contributions to short and long term memory
延迟活动对短期和长期记忆贡献的多模式研究
  • 批准号:
    9816023
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了