Cohomology and Representation Theory

上同调和表示论

基本信息

  • 批准号:
    0808968
  • 负责人:
  • 金额:
    $ 6.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-11-09 至 2010-09-30
  • 项目状态:
    已结题

项目摘要

The principal investigator will explore problems in the modular representation theory and cohomology of the symmetric group and related objects, including algebraic groups, Frobenius kernels, Schur algebras and superalgebras, and Iwahori-Hecke algebras. The project includes using connections between the representation theories of these different objects to obtain new results. The ordinary representation theory of the symmetric group is closely related to that of the general linear group through classical work of Schur and others. Recently this relationship has been extended to the modular representation theory, and even more recently to the corresponding cohomology. Although this interplay can lead to new results in either direction, it is especially useful in studying the symmetric group, where many of the basic problems remain completely open. The investigator will continue to refine and improve techniques to exploit this important relationship in order to obtain results in both areas. Recently Parshall and Scott proved that the celebrated Lusztig conjecture, in the case of the general linear group, is equivalent to a problem entirely in the realm of symmetric group representation theory. Meanwhile breakthroughs by Brundan and Kleshchev, Ariki, Grojnowski and others have led to a ``Lie-theoretic" approach to the symmetric group theory which is very different from the original approach of Gordon James and others. Together these developments suggest the next few years will be very exciting indeed in this field.This project is in an area of mathematics known as representation theory, in particular the representation theory of finite groups. Problems involving groups and their representations arises naturally in many diverse fields, including mathematical physics, chemistry, error correcting codes, cryptography and others. In particular, ideas used by mathematical physicists have played an important role in recent progress made in many of the areas described above.
主要研究者将探索对称群和相关对象的模表示理论和上同调问题,包括代数群,Frobenius核,Schur代数和超代数以及Iwahori-Hecke代数。该项目包括使用这些不同对象的表征理论之间的联系,以获得新的结果。对称群的普通表示理论通过舒尔等人的经典工作与一般线性群的表示理论密切相关。最近这种关系已被扩展到模表示理论,甚至最近到相应的上同调。虽然这种相互作用可以在任何一个方向上产生新的结果,但它在研究对称群时特别有用,其中许多基本问题仍然完全开放。 调查人员将继续改进和提高利用这一重要关系的技术,以便在这两个领域取得成果。最近Parshall和Scott证明了著名的Lusztig猜想,在一般线性群的情况下,是等价于一个问题完全在领域的对称群表示理论。与此同时,Brundan和Kleshchev,Ariki,Grojnowski等人的突破导致了对称群理论的“Lie理论”方法,这与Gordon James等人的原始方法非常不同。这些发展共同表明,未来几年将是非常令人兴奋的确实在这一领域。这个项目是在一个领域的数学称为代表性理论,特别是代表性理论的有限群。涉及群及其表示的问题自然出现在许多不同的领域,包括数学物理,化学,纠错码,密码学等。特别是,数学物理学家使用的思想在上述许多领域的最新进展中发挥了重要作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Hemmer其他文献

David Hemmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Hemmer', 18)}}的其他基金

Connections between cohomology and representation theory of symmetric groups, braid groups, Hecke algebras, and algebraic groups
对称群、辫群、赫克代数和代数群的上同调与表示论之间的联系
  • 批准号:
    1068783
  • 财政年份:
    2011
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Standard Grant
Cohomology and Representation Theory
上同调和表示论
  • 批准号:
    0556260
  • 财政年份:
    2006
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Standard Grant
Modular Representation Theory of the Symmetric Group
对称群的模表示论
  • 批准号:
    0102019
  • 财政年份:
    2001
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Fellowship Award

相似海外基金

Monoidal Triangular Categories: Representation Theory, Cohomology, and Geometry
幺半群三角范畴:表示论、上同调和几何
  • 批准号:
    2101941
  • 财政年份:
    2021
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Standard Grant
Cohomology of finite groups and homotopy theory of classifying spaces from the viewpoint of representation theory
从表示论的角度看有限群的上同调与空间分类同伦论
  • 批准号:
    21K03154
  • 财政年份:
    2021
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference on Equivariant Elliptic Cohomology and Geometric Representation Theory
等变椭圆上同调与几何表示理论会议
  • 批准号:
    1903754
  • 财政年份:
    2019
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Standard Grant
Applying amalgams to representation theory and cohomology
将汞齐应用于表示论和上同调
  • 批准号:
    1935781
  • 财政年份:
    2017
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Studentship
Cohomology theory of finite groups from the viewpoint of representation theory
从表示论的角度看有限群的上同调理论
  • 批准号:
    16K05054
  • 财政年份:
    2016
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation Theory, Geometry, and Cohomology in Tensor Triangulated Categories
张量三角范畴中的表示论、几何和上同调
  • 批准号:
    1402271
  • 财政年份:
    2014
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Standard Grant
Cohomology of finite groups and homotopy theory of classifying space from the view point of representation theory
表示论角度的有限群上同调与空间分类同伦论
  • 批准号:
    24540007
  • 财政年份:
    2012
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Cohomology and Support in Representation Theory and Related Topics
会议:表示论及相关主题中的上同调和支持
  • 批准号:
    1201345
  • 财政年份:
    2012
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Standard Grant
Sylow-p subgroups of absolute galois groups, representation theory, and galois cohomology
绝对伽罗瓦群的 Sylow-p 子群、表示论和伽罗瓦上同调
  • 批准号:
    41981-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Discovery Grants Program - Individual
Connections between cohomology and representation theory of symmetric groups, braid groups, Hecke algebras, and algebraic groups
对称群、辫群、赫克代数和代数群的上同调与表示论之间的联系
  • 批准号:
    1068783
  • 财政年份:
    2011
  • 资助金额:
    $ 6.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了