Numerical Linear Algebra and Approximation Theory Methods for Efficient Data Exploration

用于高效数据探索的数值线性代数和近似理论方法

基本信息

  • 批准号:
    0810938
  • 负责人:
  • 金额:
    $ 27.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-15 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The rapidly increasing sizes of the data sets being treated in various applications is starting to render inadequate many of the traditional methods used in data exploration. These methods break down not only because of the increase in the number of observations (size of datasets themselves) but also because the underlying phenomena observed are intrinsically of high dimension, i.e., they involve a large number of variables or parameters. High-dimensional datasets present great mathematical challenges but in practice, the related difficulties are mitigated by the fact that in most cases, not all the measured variables are important for an understanding of the underlying phenomenon. One of the difficulties faced by current dimension reduction techniques is that existing algorithms are often too costly when dealing with very large data sets. To tackle a few of these challenges the research team of this project will focus on the development of computationally efficient methods which blend classical techniques such as PCA or LLE, with other strategies from numerical linear algebra and approximation theory, to reduce problem sizes. Thus, multilevel or divide and conquer techniques are quite common in other areas of scientific computing but received relatively little attention in data mining. The proposed work will put methods of this type at the forefront. The research team will also consider tools borrowed from graph theory, specifically techniques based on hypergraphs, graph partitioning, and kNN graph construction, to help with dimension reduction. Finally, this project will address the complex issue of dimension reduction by means of tensors and the use of multilinear algebra.Society is currently facing an unparalleled surge of exploitable information in scientific, engineering, and economical applications. Typical examples of such applications include face-recognition which has uses in security and commerce for example, and the processing of queries on the world-wide web. The data sets generated in these applications are not only gaining in size (more data samples) but also in their dimension (number of parameters or variables to represent each data sample). For example, in face recognition, where one deals with sets of pictures the size would be the number of pictures and the dimension would be the number of pixels used to represent each picture. Reducing the dimension of data is a vital tool used in applications dealing with large data sets. It is therefore not too surprising that this line of research has gained enormous importance in the last few years. The investigators of this project will explore methods to solve this problem, putting an emphasis on those methods characterized by low computational cost. Among these methods are a class of divide and conquer techniques which divide the sets in smaller ones on which the classical methods are applied independently.
在各种应用程序中处理的数据集的大小迅速增加,开始使数据探索中使用的许多传统方法不足。 这些方法之所以失败,不仅是因为观测数量的增加(数据集本身的大小),而且还因为观测到的基本现象本质上是高维的,即,它们涉及大量的变量或参数。 高维数据集提出了巨大的数学挑战,但在实践中,相关的困难被以下事实所缓解:在大多数情况下,并非所有测量的变量对于理解潜在的现象都很重要。 当前的降维技术面临的困难之一是,现有的算法往往是太昂贵时,处理非常大的数据集。 为了解决其中的一些挑战,该项目的研究团队将专注于开发计算效率高的方法,这些方法将PCA或LLE等经典技术与数值线性代数和近似理论的其他策略相结合,以减少问题的规模。 因此,多层次或分治技术在科学计算的其他领域非常常见,但在数据挖掘中却很少受到关注。拟议的工作将把这类方法放在首位。 研究小组还将考虑借用工具 根据图论, 具体技术 基于超图、图划分和kNN图构造,以帮助降维。 最后,这个项目将通过张量和使用多线性代数来解决复杂的降维问题。社会目前正面临着科学,工程和经济应用中前所未有的可利用信息的激增。 这种应用的典型例子包括面部识别,例如在安全和商业中的使用,以及在万维网上的查询处理。 在这些应用程序中生成的数据集不仅在大小上(更多的数据样本),而且在维度上(代表每个数据样本的参数或变量的数量)。 例如,在人脸识别中,当处理图片集时,大小将是图片的数量,维度将是用于表示每个图片的像素的数量。 减少数据的维度是处理大型数据集的应用程序中使用的重要工具。 因此,这一研究领域在过去几年中获得了巨大的重要性也就不足为奇了。 本项目的研究人员将探索解决这一问题的方法,重点是那些计算成本低的方法。在这些方法中,有一类分而治之的技术,它将集合分成较小的集合,在这些集合上独立地应用经典方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yousef Saad其他文献

Randomized linear solvers for computational architectures with straggling workers
用于具有落后工人的计算架构的随机线性求解器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Kalantzis;Yuanzhe Xi;L. Horesh;Yousef Saad
  • 通讯作者:
    Yousef Saad
Efficiently Generalizing Ultra-Cold Atomic Simulations via Inhomogeneous Dynamical Mean-Field Theory from Two- to Three-Dimensions
通过二维到三维的非齐次动态平均场理论有效推广超冷原子模拟
Computing charge densities with partially reorthogonalized Lanczos
  • DOI:
    10.1016/j.cpc.2005.05.005
  • 发表时间:
    2005-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Constantine Bekas;Yousef Saad;Murilo L. Tiago;James R. Chelikowsky
  • 通讯作者:
    James R. Chelikowsky
Algorithms for the evolution of electronic properties in nanocrystals
  • DOI:
    10.1016/j.cpc.2007.02.072
  • 发表时间:
    2007-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    James R. Chelikowsky;Murilo L. Tiago;Yousef Saad;Yunkai Zhou
  • 通讯作者:
    Yunkai Zhou

Yousef Saad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yousef Saad', 18)}}的其他基金

Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
  • 批准号:
    2208456
  • 财政年份:
    2022
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
Multilevel Graph-Based Methods for Efficient Data Exploration
基于多级图的高效数据探索方法
  • 批准号:
    2011324
  • 财政年份:
    2020
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
Advances in Robust Multilevel Preconditioning Methods for Sparse Linear Systems
稀疏线性系统鲁棒多级预处理方法的进展
  • 批准号:
    1912048
  • 财政年份:
    2019
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
  • 批准号:
    1812695
  • 财政年份:
    2018
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
Tenth International Conference on Preconditioning Techniques for Scientific and Industrial Applications
第十届科学和工业应用预处理技术国际会议
  • 批准号:
    1735572
  • 财政年份:
    2017
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative research: Advanced algorithms and high-performance software for large scale eigenvalue problems
AF:中:协作研究:大规模特征值问题的先进算法和高性能软件
  • 批准号:
    1505970
  • 财政年份:
    2015
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Continuing Grant
Advances in Robust Multilevel Preconditioning Methods for Sparse Linear Systems
稀疏线性系统鲁棒多级预处理方法的进展
  • 批准号:
    1521573
  • 财政年份:
    2015
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
AF: small: Numerical Linear Algebra Methods for Efficient Data Exploration
AF:小:高效数据探索的数值线性代数方法
  • 批准号:
    1318597
  • 财政年份:
    2013
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
Advances in robust multilevel preconditioning methods for sparse linear systems
稀疏线性系统鲁棒多级预处理方法的进展
  • 批准号:
    1216366
  • 财政年份:
    2012
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
Collaborative research: Development of efficient petascale algorithms for inhomogeneous quantum-mechanical systems
合作研究:开发非齐次量子力学系统的高效千万亿级算法
  • 批准号:
    0904587
  • 财政年份:
    2009
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Research Grant
DMS-EPSRC:Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    2313434
  • 财政年份:
    2023
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
  • 批准号:
    2309445
  • 财政年份:
    2023
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
  • 批准号:
    2309446
  • 财政年份:
    2023
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152661
  • 财政年份:
    2022
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152704
  • 财政年份:
    2022
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152687
  • 财政年份:
    2022
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Standard Grant
CAREER: Numerical Linear Algebra, Random Matrix Theory and Applications
职业:数值线性代数、随机矩阵理论及应用
  • 批准号:
    1945652
  • 财政年份:
    2019
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Continuing Grant
Research on high-performance and high-dimensional numerical linear algebra applying an asynchronous task mechanism on the exascale computing era
亿兆级计算时代应用异步任务机制的高性能高维数值线性代数研究
  • 批准号:
    19H04127
  • 财政年份:
    2019
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Numerical Linear Algebra, Random Matrix Theory and Applications
职业:数值线性代数、随机矩阵理论及应用
  • 批准号:
    1753185
  • 财政年份:
    2018
  • 资助金额:
    $ 27.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了