Integrating Problem-driven and Class-based Learning for Constraint Satisfaction

整合问题驱动和基于课堂的学习以实现约束满足

基本信息

  • 批准号:
    0811437
  • 负责人:
  • 金额:
    $ 43.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Many large-scale, real-world problems are readily understood, represented, and solved as constraint satisfaction problems. Organizations throughout the world exploit this approach to solve difficult problems in design and configuration, planning and scheduling, and diagnosis and testing. Nonetheless, each new, large-scale problem faces the same bottleneck: scarce human experts must select, combine, and refine the various techniques currently available for constraint satisfaction and optimization. This cognitively-oriented project increases the ability of both people and machines to address challenging new constraint satisfaction problems.The resultant autonomous, robust system reasons from past experience, but with the ability to recognize and respond intelligently to novelty. The new approach integrates a variety of techniques to capture crucial subproblems, the most informative and conflict-ridden parts of a problem. Because crucial sub-problems often recur with only small variations, knowledge about how to solve them may be re-used. Moreover, when a problem is unsolvable, the system identifies crucial subproblems for human analysis and reformulation ? a first step toward collaborative problem solving.This project speeds the uptake of an important technology. It generates knowledge about crucial subproblems, search, representation, and learning for constraint solving, and thereby makes constraint-programming expertise more readily available. This project analyzes the efficacy of its approach on a variety of constraint problems, particularly real-world problems.
许多大规模的现实世界的问题很容易理解,表示和解决的约束满足问题。世界各地的组织利用这种方法来解决设计和配置、规划和调度以及诊断和测试中的难题。尽管如此,每一个新的大规模问题都面临着同样的瓶颈:稀缺的人类专家必须选择、联合收割机并改进目前可用于约束满足和优化的各种技术。这个认知导向的项目提高了人和机器解决具有挑战性的新约束满足问题的能力。由此产生的自主,强大的系统从过去的经验中推理,但具有识别和智能响应新奇事物的能力。新的方法集成了各种技术,以捕捉关键的子问题,最翔实和冲突的一个问题的部分。因为关键的子问题经常重复出现,只有很小的变化,关于如何解决它们的知识可以重复使用。此外,当一个问题是无法解决的,该系统确定人类分析和重新制定的关键子问题?迈向合作解决问题的第一步。2这个项目加速了一项重要技术的吸收。它产生的知识的关键子问题,搜索,表示和学习约束求解,从而使约束编程的专业知识更容易获得。该项目分析了其方法在各种约束问题上的有效性,特别是现实世界的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Epstein其他文献

Susan Epstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Epstein', 18)}}的其他基金

EAGER: Cluster Detection in Graphs for Noisy, Incomplete Biological Data
EAGER:图表中噪声、不完整生物数据的聚类检测
  • 批准号:
    1242451
  • 财政年份:
    2012
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Learning to perform consistently in human/multi-robot teams
RI:小型:协作研究:学习在人类/多机器人团队中表现一致
  • 批准号:
    1117000
  • 财政年份:
    2011
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
REU Supplement to Incremental Wizard Ablation: A Novel WOz Paradigm for Learning, Testing and Evaluating Human-Machine Dialogue using Parameterized Corpora
REU 对增量向导消融的补充:使用参数化语料库学习、测试和评估人机对话的新型 WOz 范式
  • 批准号:
    0849666
  • 财政年份:
    2009
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
Active Structures Support Problem-driven Learning for Constraint Satisfaction
主动结构支持问题驱动学习以实现约束满足
  • 批准号:
    0739122
  • 财政年份:
    2007
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
Incremental Wizard Ablation: A Novel WOz Paradigm for Learning, Testing and Evaluating Human-Machine Dialogue using Parameterized Corpora
增量向导消融:使用参数化语料库学习、测试和评估人机对话的新型 WOz 范式
  • 批准号:
    0744904
  • 财政年份:
    2007
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
Integrating Planning and Search Methods to Solve Constraint Problems
集成规划和搜索方法来解决约束问题
  • 批准号:
    0328743
  • 财政年份:
    2003
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
The Integration of Visual Perceptual Reasoning with a Multi-Agent, Decision-Making Expert
视觉感知推理与多智能体决策专家的集成
  • 批准号:
    9423085
  • 财政年份:
    1995
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Continuing Grant
Learning Search Control Strategy
学习搜索控制策略
  • 批准号:
    9001936
  • 财政年份:
    1990
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Continuing Grant

相似海外基金

BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
  • 批准号:
    EP/Y036433/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Research Grant
Hilbert's Sixth Problem: From Particles to Waves
希尔伯特第六个问题:从粒子到波
  • 批准号:
    2350242
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Continuing Grant
Barking up the right trees – A microbial solution for our methane problem
树皮正确 — 解决甲烷问题的微生物解决方案
  • 批准号:
    DE240100338
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Discovery Early Career Researcher Award
Hunting Dark Satellites Problem:ダークマターパラドクスの解明
寻找暗卫星问题:解开暗物质悖论
  • 批准号:
    24K07085
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Is to achieve a breakthrough in the problem of how to reliably control the many qubits in an errorfree and scalable way.
就是要在如何以无错误且可扩展的方式可靠地控制众多量子比特的问题上取得突破。
  • 批准号:
    2906479
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Studentship
CAREER: Inviting all 21st century problem-solvers: Building equity by de-tracking middle school mathematics instruction
职业:邀请所有 21 世纪的问题解决者:通过打破中学数学教学的轨道来建立公平
  • 批准号:
    2336391
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Continuing Grant
MCA: Problem-Based Learning for Warehousing and Order Fulfillment
MCA:基于问题的仓储和订单履行学习
  • 批准号:
    2322250
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
Promise Constraint Satisfaction Problem: Structure and Complexity
承诺约束满足问题:结构和复杂性
  • 批准号:
    EP/X033201/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Fellowship
Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
  • 批准号:
    EP/Y033078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Research Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
  • 批准号:
    EP/Y036069/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了